ΠΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½Π°Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΠΌΠΌΠ° Π·ΡΠ±ΠΎΠ²: ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΠΈ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π°, ΡΡ Π΅ΠΌΠ° ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ
ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΠΈ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π°, ΡΡ Π΅ΠΌΠ° ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ
1 Π°Π²Π³ΡΡΡΠ° 2017Β Β Β ΠΠΎΡΠ»Π΅Π΄Π½ΡΡ ΡΠ΅Π΄Π°ΠΊΡΠΈΡ: 12 ΡΠ½Π²Π°ΡΡ 2020Β Β Β ΠΠΎΠ»Π΅Π·Π½ΠΈ Π·ΡΠ±ΠΎΠ² ΠΠ²ΡΠΎΡ ΡΡΠ°ΡΡΠΈ: ΠΡΠΊΠ°Π½ΠΈΠ½Π° ΠΡΠ±ΠΎΠ²Ρ ΠΠ°Π»Π΅ΡΡΠ΅Π²Π½Π° (Π‘ΡΡΠ°Π½ΠΈΡΠ° Π°Π²ΡΠΎΡΠ° | ΠΡΠ΅ ΡΡΠ°ΡΡΠΈ) — Π²ΡΠ°Ρ-ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³-ΡΠ΅ΡΠ°ΠΏΠ΅Π²Ρ, ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³-ΠΏΠ°ΡΠΎΠ΄ΠΎΠ½ΡΠΎΠ»ΠΎΠ³. Π‘ΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΡΠ΅ΡΡΡ Π² ΠΎΠ±Π»Π°ΡΡΠΈ: ΡΠ½Π΄ΠΎΠ΄ΠΎΠ½ΡΠΈΠΈ, ΡΡΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΡΠ΅ΡΡΠ°Π²ΡΠ°ΡΠΈΠΈ, ΠΏΡΠΎΡΠ΅ΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ Π³ΠΈΠ³ΠΈΠ΅Π½Ρ ΠΈ ΠΏΠ°ΡΠ°Π΄ΠΎΠ½ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ.Π ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°ΠΌ Π½Π΅ΡΠ΅Π΄ΠΊΠΎ Π½Π°Π·Π½Π°ΡΠ°Π΅ΡΡΡ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½Π°Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ Π·ΡΠ±ΠΎΠ². ΠΠ½ΠΎΠ³ΠΈΠ΅ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π² Π½Π΅Π΄ΠΎΡΠΌΠ΅Π½ΠΈΠΈ, ΡΡΠΎΠΈΡ Π»ΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡ ΡΡΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅, Π½Π΅ ΡΠ»ΠΈΡΠΊΠΎΠΌ Π»ΠΈ ΠΎΠ½ΠΎ ΡΠΈΡΠΊΠΎΠ²Π°Π½Π½ΠΎ ΠΈ Π² ΠΊΠ°ΠΊΠΈΡ ΡΠ»ΡΡΠ°ΡΡ ΠΎΠΏΡΠ°Π²Π΄Π°Π½Π½ΠΎ Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΠ’ Π·ΡΠ±ΠΎΠ².
Π ΡΠ΅ΠΌ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ Π·ΡΠ±ΠΎΠ²
ΠΡΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ Π»ΡΠ±ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° ΠΠ’ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΏΡΠΈΠ½ΡΠΈΠΏ ΡΠ°Π·Π½ΠΎΠΉ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ Π»ΡΡΠ΅ΠΉ ΡΠ΅Π½ΡΠ³Π΅Π½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΡΠΊΠ°Π½ΡΠΌΠΈ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ°: ΠΏΠΎΠ»ΠΎΡΡΡΠΌΠΈ, ΠΊΠΎΡΡΡΠΌΠΈ, ΠΌΡΡΡΠ°ΠΌΠΈ, ΡΠ²ΡΠ·ΠΊΠ°ΠΌΠΈ ΠΈ Π΄Ρ. ΠΡΠΈ ΡΡΠΎΠΌ Π»ΡΡΠΈ ΠΏΡΠΎΠ½ΠΈΠΊΠ°ΡΡ ΡΠΊΠ²ΠΎΠ·Ρ Π»ΡΠ±ΡΠ΅ ΡΠΊΠ°Π½ΠΈ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ° ΠΈ ΡΠ»Π°Π²Π»ΠΈΠ²Π°ΡΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π΅ΡΠ΅ΠΊΡΠΎΡΠ°. ΠΠΎΡΠ»Π΅ ΡΠ΅ΡΠΈΠΈ ΠΏΠΎΡΠ»ΠΎΠΉΠ½ΡΡ ΡΠ½ΠΈΠΌΠΊΠΎΠ² Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ° ΡΡΡΠΎΠΈΡΡΡ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½Π°Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ 3D ΠΌΠΎΠ΄Π΅Π»Ρ.
Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ Π΄Π΅Π½ΡΠ°Π»ΡΠ½Π°Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ Π·ΡΠ±ΠΎΠ² Π½Π°Π·Π½Π°ΡΠ°Π΅ΡΡΡ ΠΏΠ΅ΡΠ΅Π΄ ΠΏΡΠΎΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ, ΠΈΠΌΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠ΅ΠΉ Π·ΡΠ±ΠΎΠ², ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠ²Π½ΡΠΌ Π²ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΡΡΠ²ΠΎΠΌ Π½Π° ΡΠ΅Π»ΡΡΡΡ.
ΠΠ΅ΡΠΎΠ΄ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ³ΡΠ°ΡΠΈΠΈ Π½Π΅ Π΄Π°Π΅Ρ Π²ΡΠ΅Ρ ΡΠ΅Ρ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ², ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ΅Ρ Π΄Π°ΡΡ ΠΌΠ΅ΡΠΎΠ΄ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ. ΠΠ’ Π·ΡΠ±ΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΈΠ·ΡΡΠΈΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ Π·ΡΠ±ΠΎ-ΡΠ΅Π»ΡΡΡΠ½ΠΎΠΉ Π°Π½Π°ΡΠΎΠΌΠΈΠΈ: ΡΡΡΠΎΠ΅Π½ΠΈΡ Π·ΡΠ±ΠΎΠ² ΠΈ ΠΊΠ°Π½Π°Π»ΠΎΠ², ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΊΠΎΡΡΠ΅ΠΉ ΡΠ΅Π»ΡΡΡΠ΅ΠΉ.
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΠ’ Π½Π΅Π·Π°ΠΌΠ΅Π½ΠΈΠΌΡ Π΄Π»Ρ ΠΎΡΡΠΎΠΏΠ΅Π΄ΠΎΠ², Π΄Π΅ΡΡΠΊΠΈΡ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΎΠ², ΠΎΡΡΠΎΠ΄ΠΎΠ½ΡΠΎΠ², Ρ ΠΈΡΡΡΠ³ΠΎΠ². ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ Π»ΡΠ±ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅Π·Π° Π²ΡΠ°ΡΡ ΡΠ°ΡΡΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡ Π΄Π°Π½Π½ΡΠ΅ ΠΎ ΡΠΎΡΠ½ΡΡ ΡΠ°Π·ΠΌΠ΅ΡΠ°Ρ ΡΠ΅Π»ΡΡΡΠ½ΠΎΠΉ Π°Π½Π°ΡΠΎΠΌΠΈΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ Π²Π΅Ρ Π½ΡΠ°Π½ΡΠ°Ρ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ Π·ΡΠ±ΠΎΠ². Π’ΠΎΠ»ΡΠΊΠΎ Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΏΡΠΎΡΠ΅Π· Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·Π³ΠΎΡΠΎΠ²ΠΈΡΡ Ρ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΠΎΠΌΡΠΎΡΡΠ½ΠΎΡΡΡΡ Π΄Π»Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°.
ΠΡΠ»ΠΈ ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΠΈΠΌΠΏΠ»Π°Π½ΡΠΎΠ² Π²ΠΆΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΊΠΎΡΠ½Ρ Π±ΡΠ΄Π΅Ρ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΎ Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎ (ΠΏΠΎ Π½Π΅ΡΠΎΡΠ½ΡΠΌ ΡΠ°Π·ΠΌΠ΅ΡΠ°ΠΌ ΠΈΠ»ΠΈ Π² Π½Π΅Π²Π΅ΡΠ½ΠΎ Π²ΡΠ±ΡΠ°Π½Π½ΠΎΠΌ ΠΌΠ΅ΡΡΠ΅), ΡΠΎ ΠΏΡΠΎΡΠ΅Π· Π±ΡΠ΄Π΅Ρ Π½Π΅ΡΠ΄ΠΎΠ±Π½ΡΠΌ Π΄Π»Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° ΠΈΠ»ΠΈ Π±ΡΡΡΡΠΎ Π²ΡΠΉΠ΄Π΅Ρ ΠΈΠ· ΡΡΡΠΎΡ.
ΠΠΎΡΡΠΎΠΌΡ ΠΠ’ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ°Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΏΡΠΎΡΠ΅Π΄ΡΡΠΎΠΉ ΠΏΡΠΈ Π»ΡΠ±ΠΎΠΌ Π²ΠΈΠ΄Π΅ Π·ΡΠ±Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ (ΡΡΠ΅ΠΌΠ½ΡΠ΅ ΠΈΠ»ΠΈ Π΄Π΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ ΠΏΡΠΎΡΠ΅Π·Ρ).
ΠΠ΅Π·Π°ΠΌΠ΅Π½ΠΈΠΌΠ° ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ Π·ΡΠ±ΠΎΠ² ΠΈ Π΄Π»Ρ ΠΎΡΡΠΎΠ΄ΠΎΠ½ΡΠΎΠ², ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΈΠ΄Π΅Π°Π»ΡΠ½ΠΎ ΠΏΠΎ
α ΠΠ’ Π·ΡΠ±ΠΎΠ² | Π¦Π΅Π½Ρ ΠΎΡ 1100 ΡΡΠ±Π»Π΅ΠΉ
ΠΠ±ΡΠ°Ρ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ
ΠΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½Π°Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ Π·ΡΠ±ΠΎΠ² β ΡΡΠΎ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅Π»ΡΡΡΠ½ΠΎ-Π»ΠΈΡΠ΅Π²ΠΎΠ³ΠΎ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ°, ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠΌΠ°Ρ Π½Π° ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠ΅. ΠΡΠΎΡ ΠΌΠ΅ΡΠΎΠ΄ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΠΌ ΠΈ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌ Π² ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ, ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΎΡΠΌΠΎΡΡΠ΅ΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ Π·ΡΠ±ΠΎΠ² ΠΈ ΡΠ΅Π»ΡΡΡΠΈ.
Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΡ Π½Π°Π·Π½Π°ΡΠ°ΡΡ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈ ΠΈ ΡΠ΅Π»ΡΡΡΠ½ΠΎ-Π»ΠΈΡΠ΅Π²ΡΠ΅ Ρ ΠΈΡΡΡΠ³ΠΈ ΠΏΠ΅ΡΠ΅Π΄ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ (ΠΈΠΌΠΏΠ»Π°Π½ΡΠ°ΡΠΈΡ, ΠΊΠΎΡΡΠ½Π°Ρ ΠΏΠ»Π°ΡΡΠΈΠΊΠ°).
Π‘ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ ΠΎΠ±ΠΎΡΡΠ΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΡΠ΅Ρ Π²ΡΠ΅ ΠΎΡΠ°Π³ΠΈ Π΄Π΅ΠΌΠΈΠ½Π΅ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΡΠΊΠ°Π½Π΅ΠΉ Π·ΡΠ±ΠΎΠ², ΡΡΠΎ Π½Π΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅ΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠΌ ΡΠ΄Π΅Π»Π°ΡΡ ΠΏΡΠΈ ΠΎΠ±ΡΡΠ½ΠΎΠΌ ΠΎΡΠΌΠΎΡΡΠ΅.
Π§ΡΠΎ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ?
ΠΠ΅Π½ΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½Π°Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ Π²ΠΈΠ·ΡΠ°Π»ΠΈΠ·ΠΈΡΡΠ΅Ρ ΠΏΠΎΠ»ΠΎΡΡΡ ΠΈ ΠΏΠ°Π·ΡΡ ΠΈ Π½ΠΎΡΠ°, Π·ΡΠ±Ρ, Π½ΠΈΠΆΠ½ΡΡ ΠΈ Π²Π΅ΡΡ Π½ΡΡ ΡΠ΅Π»ΡΡΡΡ. ΠΠΎΠ½ΡΡΠ°ΡΠΈΡΡΠ΅Ρ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ:
- ΠΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅ ΡΠ»ΡΠ½Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ;
- ΠΠΏΡΡ ΠΎΠ»Ρ Π² Π·ΡΠ±ΠΎΡΠ΅Π»ΡΡΡΠ½ΠΎΠΌ ΠΎΡΠ΄Π΅Π»Π΅;
- ΠΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠ΅ ΠΏΠ°ΡΠΎΠ΄ΠΎΠ½ΡΠ°;
- ΠΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΊΠΎΡΠ½Π΅Π²ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Π°;
- Π Π°Π·Π»ΠΈΡΠ½ΡΠ΅ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡ Π²ΠΈΡΠΎΡΠ½ΠΎ-Π½ΠΈΠΆΠ½Π΅ΡΠ΅Π»ΡΡΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠ΄Π΅Π»Π°;
- Π’ΡΠ°Π²ΠΌΡ;
- ΠΠ½ΡΠ΅ΠΊΡΠΈΠΈ;
- ΠΠ±ΡΡΠ΅ΡΡ;
- ΠΠ΅ΠΊΡΠΎΠ·;
- ΠΡΠ±ΠΎ-Π΄Π΅ΡΠ½Π΅Π²ΡΠ΅ ΠΊΠ°ΡΠΌΠ°Π½Ρ;
- ΠΠ½ΠΎΠΌΠ°Π»ΠΈΠΈ Π·ΡΠ±ΠΎΠ² ΠΈ ΠΈΡ ΡΠΎΡΡ;
- ΠΡΠΊΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ΅Π³ΠΎΡΠΎΠ΄ΠΊΠΈ;
- ΠΠ΅ ΠΏΡΠΎΡΠ΅Π·Π°Π²ΡΠΈΠ΅ΡΡ Π·ΡΠ±Ρ.
ΠΠΎΠΊΠ°Π·Π°Π½ΠΈΡ
ΠΠ’ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΏΡΠΈ Π½Π°Π»ΠΈΡΠΈΠΈ ΡΠ»Π΅Π΄ΡΡΡΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΠΉ:
- Π’ΡΠ°Π²ΠΌΠ°;
- ΠΡΠΎΠ±Π»Π΅ΠΌΡ Π² ΡΠ΄Π°Π»Π΅Π½ΠΈΠΈ Π·ΡΠ±Π°;
- ΠΡΠΎΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅;
- ΠΠΎΠ»Π΅Π²ΡΠ΅ ΠΎΡΡΡΠ΅Π½ΠΈΡ Π² ΠΌΡΡΡΠ°Ρ ΡΠ΅Π»ΡΡΡΠΈ;
- ΠΠΈΡΡΠ°;
- ΠΠΏΡΡ ΠΎΠ»Ρ;
- ΠΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡ ΠΏΡΠΈΠΊΡΡΠ°;
- ΠΠΎΡΠ»Π΅ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄;
- ΠΡΠ΅Π΄ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅;
- ΠΠ½ΠΎΠΌΠ°Π»ΠΈΠΈ ΡΠΎΡΡΠ° Π·ΡΠ±ΠΎΠ²;
- ΠΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ 3D;
- ΠΠΎΠ½ΡΡΠΎΠ»Ρ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° Π»Π΅ΡΠ΅Π½ΠΈΡ.
ΠΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΡ
ΠΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΠΉ ΠΊ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π½Π΅ ΡΠ°ΠΊ ΠΌΠ½ΠΎΠ³ΠΎ:
- ΠΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΡΡΡ;
- Π‘Π°Ρ Π°ΡΠ½ΡΠΉ Π΄ΠΈΠ°Π±Π΅Ρ;
- ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ Ρ ΠΏΠ΅ΡΠ΅Π½ΡΡ ΠΈ ΠΏΠΎΡΠΊΠ°ΠΌΠΈ;
ΠΡΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ Ρ Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ½ΡΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ Π²Π΅ΡΠ΅ΡΡΠ²Π° ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΠ΅ΠΌ ΡΠ»ΡΠΆΠΈΡ Π°Π»Π»Π΅ΡΠ³ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅Π°ΠΊΡΠΈΡ Π½Π° ΠΉΠΎΠ΄, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π½ ΡΠΎΠ΄Π΅ΡΠΆΠΈΡΡΡ Π² ΠΊΠΎΠ½ΡΡΠ°ΡΡΠ΅.
Π‘ ΠΎΡΠΎΠ±ΠΎΠΉ ΠΎΡΡΠΎΡΠΎΠΆΠ½ΠΎΡΡΡΡ ΠΊ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ΅ Π΄ΠΎΠΏΡΡΠΊΠ°ΡΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π³ΠΈΠΏΠ΅ΡΠΊΠΈΠ½Π΅Π·Π°ΠΌΠΈ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π²ΠΎ Π²ΡΠ΅ΠΌΡ ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ Π²Π°ΠΆΠ½ΠΎ ΡΠΎΡ ΡΠ°Π½ΡΡΡ Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅. ΠΠ²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΎΠΆΠ΅Ρ ΡΠΌΠ°Π·Π°ΡΡ ΡΠ½ΠΈΠΌΠΊΠΈ.
ΠΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ°
ΠΡΠ»ΠΈ ΠΏΠ»Π°Π½ΠΈΡΡΠ΅ΡΡΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ Π·ΡΠ±ΠΎΠ² Π±Π΅Π· Π²Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΊΠΎΠ½ΡΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ Π²Π΅ΡΠ΅ΡΡΠ²Π°, ΡΠΎ ΠΎΡΠΎΠ±ΠΎΠΉ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ Π½Π΅ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ. ΠΠ°ΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅Π΄ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΎΠΉ ΠΎΡΡΠ°Π²ΠΈΡΡ Π·Π° ΠΏΡΠ΅Π΄Π΅Π»Π°ΠΌΠΈ ΠΏΡΠΎΡΠ΅Π΄ΡΡΠ½ΠΎΠ³ΠΎ ΠΊΠ°Π±ΠΈΠ½Π΅ΡΠ° Π²ΡΠ΅ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΡ: ΡΠΊΡΠ°ΡΠ΅Π½ΠΈΡ, ΡΠ°ΡΡ, ΡΠ΅ΠΌΠ΅Π½Ρ ΠΈ ΠΏΡΠΎΡΠΈΠ΅ Π°ΠΊΡΠ΅ΡΡΡΠ°ΡΡ.
Π ΡΠ»ΡΡΠ°Π΅, Π΅ΡΠ»ΠΈ ΠΏΠ»Π°Π½ΠΈΡΡΠ΅ΡΡΡ ΠΏΡΠΎΠΉΡΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ½ΡΡΠ°ΡΡΠ°, ΡΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π²ΠΎΠ·Π΄Π΅ΡΠΆΠ°ΡΡΡΡ ΠΎΡ ΠΏΡΠΈΠ΅ΠΌΠ° ΠΏΠΈΡΠΈ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 6 ΡΠ°ΡΠΎΠ² Π΄ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ. ΠΠ²ΠΎΠ΄ΡΡ Π΅Π³ΠΎ ΠΏΡΠΈ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΡ Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π² ΠΊΠΎΡΡΡΡ ΠΈ ΠΌΡΠ³ΠΊΠΈΡ ΡΠΊΠ°Π½ΡΡ Π»ΠΈΡΠ΅Π²ΠΎΠ³ΠΎ ΠΎΡΠ΄Π΅Π»Π° ΡΠ΅ΡΠ΅ΠΏΠ°, ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΡ ΠΎΠΏΡΡ ΠΎΠ»ΠΈ ΠΈ ΠΌΠ΅ΡΠ°ΡΡΠ°Π·.
ΠΠ°ΠΊ Π΄Π΅Π»Π°ΡΡ?
ΠΡΠΎΠ²ΠΎΠ΄ΠΈΡΡΡ 3D ΠΠ’ Π·ΡΠ±ΠΎΠ² Π»ΠΈΠ±ΠΎ ΡΠΈΠ΄Ρ (ΡΡΠΎΡ), Π»ΠΈΠ±ΠΎ Π»Π΅ΠΆΠ°. Π ΠΏΠ΅ΡΠ²ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΡΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°Ρ (ΠΊΠΎΠ½ΡΡΠ½ΠΎ-Π»ΡΡΠ΅Π²ΠΎΠΉ) Π²ΡΠ³Π»ΡΠ΄ΠΈΡ, ΠΊΠ°ΠΊ ΠΎΡΡΠΎΠΏΠ°Π½ΡΠΎΠ³ΡΠ°Ρ ΠΈ ΠΏΠ°ΡΠΈΠ΅Π½Ρ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ ΡΡΠΎΠΈΡ ΠΈΠ»ΠΈ ΡΠΈΠ΄ΠΈΡ.
ΠΠ° ΡΠ΅Ρ ΠΈ ΠΏΠ»Π΅ΡΠΈ Π½Π°ΠΊΠΈΠ΄ΡΠ²Π°Π΅ΡΡΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½Π°Ρ ΡΠΊΠ°Π½Ρ Ρ ΠΏΡΠΎΡΠ»ΠΎΠΉΠΊΠΎΠΉ ΡΠ²ΠΈΠ½ΡΠ°. ΠΡΠΈ ΡΡΠΎΠΌ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠΎΠ΄Π±ΠΎΡΠΎΠ΄ΠΎΠΊ Π·Π°ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°ΡΡ Π½Π° ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΌ ΠΌΠ΅ΡΡΠ΅ Π΄Π»Ρ ΠΏΠΎΠ΄Π±ΠΎΡΠΎΠ΄ΠΊΠ°, Π° Π»Π±ΠΎΠΌ ΡΠΏΠ΅ΡΠ΅ΡΡΡΡ Π² ΡΠΈΠΊΡΠΈΡΡΡΡΡΡΡΡ ΠΎΠΏΠΎΡΡ.
ΠΠ°Π½Π½ΡΡ ΠΏΠΎΠ·Ρ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΠΎΡ ΡΠ°Π½ΠΈΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ 15-25 ΡΠ΅ΠΊΡΠ½Π΄, Π·Π° ΡΡΠΎΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π°ΠΏΠΏΠ°ΡΠ°Ρ ΡΡΠΏΠ΅Π΅Ρ ΡΠ΄Π΅Π»Π°ΡΡ ΠΎΠΊΠΎΠ»ΠΎ 250 ΠΏΠ°Π½ΠΎΡΠ°ΠΌΠ½ΡΡ ΡΠ½ΠΈΠΌΠΊΠΎΠ² Π·ΡΠ±ΠΎΠ². ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² 3D ΡΠ½ΠΈΠΌΠΊΠΎΠ² Π·Π°ΠΉΠΌΠ΅Ρ Π΅Π΅ ΠΏΠ°ΡΡ ΠΌΠΈΠ½ΡΡ. ΠΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ ΠΏΠ°ΡΠΈΠ΅Π½Ρ ΠΏΠΎΠ»ΡΡΠ°Π΅Ρ Π½Π° ΡΡΠΊΠΈ ΠΏΠΎΠ»Π½ΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ Π·ΡΠ±ΠΎΡΠ΅Π»ΡΡΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ.
ΠΠΎ Π²ΡΠΎΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΏΠ°ΡΠΈΠ΅Π½Ρ Π»ΠΎΠΆΠΈΡΡΡ Π½Π° ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΡΠΉ ΡΡΠΎΠ» ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠ°, ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ ΡΠ΄ΠΎΠ±Π½ΡΡ ΠΏΠΎΠ·Ρ. ΠΠΎΠ»ΠΎΠ²Ρ ΡΠΈΠΊΡΠΈΡΡΡΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌΠΈ ΡΠ΅ΠΌΠ½ΡΠΌΠΈ, ΠΏΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ ΡΡΠΎΠ» Π·Π°Π΄Π²ΠΈΠ³Π°Π΅ΡΡΡ Π²Π½ΡΡΡΡ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠ° ΠΈ ΠΎΡΡΠ°Π½Π°Π²Π»ΠΈΠ²Π°Π΅ΡΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ. ΠΠΎΠ»ΡΡΠΎ Π½Π°ΡΠΈΠ½Π°Π΅Ρ ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎ Π²ΡΠ°ΡΠ°ΡΡΡΡ, Π½Π΅ ΡΠΎΠ·Π΄Π°Π²Π°Ρ Π½ΠΈΠΊΠ°ΠΊΠΎΠ³ΠΎ Π΄ΠΈΡΠΊΠΎΠΌΡΠΎΡΡΠ° ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ.
ΠΠΎ Π²ΡΠ΅ΠΌΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π΄Π°ΡΡΠΈΠΊΠΈ Π½Π° ΠΊΠΎΠ»ΡΡΠ΅ Π΄Π΅Π»Π°ΡΡ ΡΠ½ΠΈΠΌΠΊΠΈ, ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ ΠΊΠΎΡΠΎΡΡΠΌΠΈ Π½Π΅ ΠΏΡΠ΅Π²ΡΡΠ°Π΅Ρ 0,1-0,2 ΠΌΠΌ. ΠΠ° Π²Π΅ΡΡ ΠΏΡΠΎΡΠ΅ΡΡ ΡΡ
ΠΎΠ΄ΠΈΡ ΠΎΠΊΠΎΠ»ΠΎ 10-15 ΠΌΠΈΠ½ΡΡ.
ΠΡΠ»ΠΈ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½Π°Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡΡ Ρ Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ½ΡΡΠ°ΡΡΠ½ΠΎΠ³ΠΎ Π²Π΅ΡΠ΅ΡΡΠ²Π°, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΠ΅ Π² ΡΠΎΡΠΎΠ²ΠΎΠΉ ΠΏΠΎΠ»ΠΎΡΡΠΈ Π½Π΅ΠΏΡΠΈΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΈΠ²ΠΊΡΡΠ° ΠΈ ΡΠΎΡΠ½ΠΎΡΡ. ΠΡΠΈ ΡΡΠΎΠΌ Π²ΡΠ΅ΠΌΡ Π½Π° ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ Π² 2 ΡΠ°Π·Π° (ΠΎΠΊΠΎΠ»ΠΎ 20 ΠΌΠΈΠ½ΡΡ).
ΠΠΈΠ΄Π΅ΠΎ ΠΎ ΡΠΎΠΌ ΠΊΠ°ΠΊ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ:
ΠΡΠ΅Π΄Π½ΠΎ Π»ΠΈ ΠΠ’ Π·ΡΠ±ΠΎΠ²?
ΠΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½Π°Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠΈΡ Π»ΡΡΠ΅ΠΉ. ΠΡΡΠ΅Π²ΠΎΠ΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π° ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ (0.039 β 0,06 ΠΌΠΠ²), ΠΏΠΎΡΡΠΎΠΌΡ ΠΎΠ½ΠΎ Π½Π΅ ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π½ΠΈΠΊΠ°ΠΊΠΎΠ³ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ. ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΌΡ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΠ΅Π΄ΡΡΠ° Π½Π΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠΊΠ°Π·Π°Π½Π° Π΄Π°ΠΆΠ΅ Π΄Π΅ΡΡΠΌ.
ΠΠΎΠΆΠ½ΠΎ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡΡ 3D ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΡΡ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ Π·ΡΠ±ΠΎΠ² 8-10 ΡΠ°Π· Π² Π³ΠΎΠ΄. ΠΠΌΠ΅Π½Π½ΠΎ ΡΡΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΡΠΎΡΠ΅Π΄ΡΡ Π½Π΅ ΠΏΡΠ΅Π²ΡΡΠ°Π΅Ρ Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΡ Π½ΠΎΡΠΌΡ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Π² Π³ΠΎΠ΄.
ΠΡΠΈ Π΄Π΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΠ’ Π·ΡΠ±ΠΎΠ² ΠΏΠ°ΡΠΈΠ΅Π½Ρ ΠΏΠΎΠ»ΡΡΠ°Π΅Ρ ΠΈΡΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ, Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΊΠΎΡΠΎΡΠΎΠΉ Π² Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅ΠΌ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅ΡΡΡ ΠΏΠ»Π°Π½ Π»Π΅ΡΠ΅Π½ΠΈΡ.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ 3D-ΡΠ½ΠΈΠΌΠΎΠΊ Π·ΡΠ±ΠΎΠ²
3 D ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π·ΡΠ±Π° β ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ. ΠΡΠ½ΠΎΡΠΈΡΡΡ ΠΊ Π³ΡΡΠΏΠΏΠ΅ ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠΎΠ½Π½ΡΡ ΠΈΠ·ΠΎΠ±ΡΠ΅ΡΠ΅Π½ΠΈΠΉ, ΠΎΠ΄Π½Π°ΠΊΠΎ ΡΠΆΠ΅ ΡΡΠ°Π»ΠΎ ΠΏΠΎΠΏΡΠ»ΡΡΠ½ΡΠΌ. Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠΎΠΉ ΡΠΎΡΠΌΡ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ ΠΏΠΎΠ»ΡΡΠ°Π΅Ρ ΡΡΡΡ ΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅Π»ΡΡΡΠΈ Ρ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΡΠΌ ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΠ΅Ρ Π΄Π΅ΡΠ°Π»Π΅ΠΉ. ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ ΡΡΠΎΠΌΡ Π²ΡΠ°Ρ Π² Π»ΡΠ±ΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ ΠΌΠΎΠΆΠ΅Ρ ΠΈΠ·ΡΡΠΈΡΡ Π·ΡΠ±Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° ΠΏΠΎΠ΄ ΡΠ΄ΠΎΠ±Π½ΡΠΌ ΡΠ°ΠΊΡΡΡΠΎΠΌ.
ΠΠ½Π°Π»ΠΎΠ³ 3D-Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ β ΠΎΡΡΠΎΠΏΠ°Π½ΡΠΎΠΌΠΎΠ³ΡΠ°ΠΌΠΌΠ° (ΠΠΠ’Π) β ΠΏΠ°Π½ΠΎΡΠ°ΠΌΠ½ΡΠΉ ΡΠ½ΠΈΠΌΠΎΠΊ ΡΠ΅Π»ΡΡΡΠΈ. ΠΠ΄Π½Π°ΠΊΠΎ ΠΎΠ½, Π² ΠΎΡΠ»ΠΈΡΠΈΠ΅ ΠΎΡ ΠΎΠ±ΡΡΠΌΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π·ΡΠ±ΠΎΠ² Π² Π΄Π²ΡΡ ΠΌΠ΅ΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ. ΠΠ»Π°Π²Π½ΡΠΉ ΠΌΠΈΠ½ΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° β ΡΠ½ΠΈΠΌΠΎΠΊ ΠΈΠΌΠ΅Π΅Ρ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΈΡΠΊΠ°ΠΆΠ΅Π½ΠΈΡ, ΠΈ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ ΠΌΠΎΠΆΠ΅Ρ Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠΈΡΠΎΠ²Π°ΡΡ ΠΠΠ’Π.
3D-ΡΠ½ΠΈΠΌΠΊΠΈ Π»ΠΈΡΠ΅Π½Ρ ΡΡΠΎΠ³ΠΎ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΊΠ°. ΠΠ°ΠΏΡΠΎΡΠΈΠ², Π΄Π°ΠΆΠ΅ ΠΏΡΠΈ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΎΠ±ΡΡΠΌΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΡΠ΅Π·Π° Π·ΡΠ±Π° Π²ΡΠ°Ρ ΠΏΠΎΠ»ΡΡΠ°Π΅Ρ ΡΠΎΡΠ½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ ΠΈΠΌΠΈΡΠΈΡΡΡΡΠ΅Π΅ ΡΠ΅Π°Π»ΡΠ½ΡΡ Β«ΠΎΠ±ΡΡΠ°Π½ΠΎΠ²ΠΊΡΒ». 3D-ΠΌΠΎΠ΄Π΅Π»Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΡΠ΅Π½ΠΈΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ Π·ΡΠ±ΠΎΠ², Π΄ΡΡΠ΅Π½, ΠΊΠΎΡΡΠ½ΠΎΠΉ ΡΠΊΠ°Π½ΠΈ, ΡΠ²ΠΈΠ΄Π΅ΡΡ ΠΈΠΌΠ΅ΡΡΠΈΠ΅ΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ.
ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ Π²Π½Π΅Π΄ΡΠ΅Π½ΠΈΡ ΡΡΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈ ΡΠΌΠΎΠ³Π»ΠΈ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠΎΠ²ΡΡΠΈΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠ²ΠΎΠ΅ΠΉ ΡΠ°Π±ΠΎΡΡ. Π ΠΈΡΠΊ Π·Π°Π΄Π΅ΡΡ Π·Π΄ΠΎΡΠΎΠ²ΡΠ΅ ΡΡΠ°ΡΡΠΊΠΈ Π»ΠΈΠ±ΠΎ Π½Π΅ Π΄ΠΎ ΠΊΠΎΠ½ΡΠ° ΡΡΡΡΠ°Π½ΠΈΡΡ Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ, Π½Π°ΠΎΠ±ΠΎΡΠΎΡ, Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ½ΠΈΠ·ΠΈΠ»ΡΡ.
ΠΠ°ΠΊΠ°Ρ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠ°Ρ Π°ΠΏΠΏΠ°ΡΠ°ΡΡΡΠ° Π½ΡΠΆΠ½Π°
Π Π΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠΈΠΉ 3D-ΡΠ½ΠΈΠΌΠΎΠΊ ΡΠ΅Π»ΡΡΡΠΈ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠ°. ΠΡΠΎ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ ΡΠΈΡΡΠΎΠ²Π°Ρ Π°ΠΏΠΏΠ°ΡΠ°ΡΡΡΠ°, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅Ρ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΡ ΠΏΡΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΌ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°. ΠΠ»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΊ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΡ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½Ρ ΡΠ²Π΅ΡΡ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ Π΄Π΅ΡΠ΅ΠΊΡΠΎΡΡ.
Π§ΡΠΎΠ±Ρ ΠΏΠ΅ΡΠ΅Π½Π΅ΡΡΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ Π² ΠΊΠΎΠΌΠΏΡΡΡΠ΅Ρ ΠΈ ΡΠΎΠ·Π΄Π°ΡΡ ΠΎΠ±ΡΡΠΌΠ½ΡΡ ΠΌΠΎΠ΄Π΅Π»Ρ, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ΅ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΠΎΠ΅ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΠ΅.
ΠΡΡΠ°Π»ΠΊΠΈΠ²Π°ΡΡΡ Β ΠΎΡ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡ ΠΈ Π½ΡΠΆΠ½ΠΎΠΉ ΡΠΎΡΠ½ΠΎΡΡΠΈ ΡΠ½ΠΈΠΌΠΊΠ°, Π΄Π΅Π»Π°Π΅ΡΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»ΠΎΠΉΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅. Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ Π²ΡΠ°Ρ ΠΏΠΎΠ»ΡΡΠ°Π΅Ρ Π΄ΠΎ 10 ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΉ ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π»ΡΡΡΠΈ.
ΠΠΎΠΊΠ°Π·Π°Π½ΠΈΡ ΠΊ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π²ΠΈΠ΄Π° ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ
3D-ΡΠ½ΠΈΠΌΠΎΠΊ Π΄Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π·ΡΠ±ΠΎΠ² ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΏΡΠΈ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ΅ ΡΠ»ΠΎΠΆΠ½ΡΡ ΡΡΠ°Π²ΠΌ ΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΡΠ΅Π»ΡΡΡΠΈ. Π ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΡΠΌ Π΄Π»Ρ Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ ΠΎΡΠ½ΠΎΡΡΡΡΡ:
- Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ΅ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π·ΡΠ±Π° Π² Π΄Π΅ΡΠ½Π΅;
- Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π² Π³Π°ΠΉΠΌΠΎΡΠΎΠ²ΡΡ ΠΏΠ°Π·ΡΡ Π°Ρ Π»ΠΈΠ±ΠΎ ΡΠ΅Π»ΡΡΡΠΈ;
- ΠΎΠ±ΡΠΈΡΠ½ΡΠΉ Π²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΏΡΠΎΡΠ΅ΡΡ;
- Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΠΉ ΠΏΡΠΈΠΊΡΡ;
- Π½Π°ΡΡΡΠ΅Π½ΠΈΡ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π½ΠΈΠΆΠ½Π΅ΡΠ΅Π»ΡΡΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡΠ°Π²Π°;
- ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΏΡΠΈ ΠΈΠΌΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ ΠΈ ΠΏΡΠΎΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ;
- ΠΏΠ΅ΡΠ΅Π»ΠΎΠΌΡ Π½ΠΈΠΆΠ½Π΅ΠΉ ΡΠ΅Π»ΡΡΡΠΈ;
- Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ° ΠΊΠ°ΡΠΈΠ΅ΡΠ½ΡΡ ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠΉ;
- ΠΏΠ»Π°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΡΡΠΎΠΏΠ΅Π΄ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΈ ΠΎΡΠ΅Π½ΠΊΠ° Π΅Π³ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ²;
- ΠΏΠ»Π°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅ΡΠ°Π»ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ;
- Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ° ΠΏΠ°ΡΠΎΠ΄ΠΎΠ½ΡΠΈΡΠ°.
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΡ
3D ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½Π°Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ Π·ΡΠ±ΠΎΠ² ΠΎΡΠ½ΠΎΠ²ΡΠ²Π°Π΅ΡΡΡ Π½Π° ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠΎΠΌ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΠΈ, ΠΏΠΎΡΡΠΎΠΌΡ Π½Π΅Π»ΡΠ·Ρ Π½Π°Π·Π²Π°ΡΡ ΡΡΡ ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΠΉ. ΠΡΡΠ΅Π²Π°Ρ Π½Π°Π³ΡΡΠ·ΠΊΠ° Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΡΠΎΠ³ΠΎ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΎΡ 0,045 Π΄ΠΎ 0,06 ΠΌΠΠ². ΠΡΠΎ Π½Π΅ ΠΎΡΠ΅Π½Ρ Π²ΡΡΠΎΠΊΠΈΠΉ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ, ΡΡΠΈΡΡΠ²Π°Ρ, ΡΡΠΎ Π³ΠΎΠ΄ΠΎΠ²ΠΎΠΉ ΠΏΡΠ΅Π΄Π΅Π» ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 5 ΠΌΠΠ² (ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΠΈΠ½Π·Π΄ΡΠ°Π²Ρ Π Π€).
Π§ΡΠΎ ΠΆΠ΅ ΠΊΠ°ΡΠ°Π΅ΡΡΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΠΉ, ΡΠΎ ΠΎΠ½ΠΈ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠ΅ Π΄Π»Ρ Π²ΡΠ΅Ρ Π²ΠΈΠ΄ΠΎΠ² ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ. ΠΡΠ½ΠΎΠ²Π½ΠΎΠ΅ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΠ΅ β ΡΡΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π±Π΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΡΡΠΈ (ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ Π² ΠΏΠ΅ΡΠ²ΠΎΠΌ ΡΡΠΈΠΌΠ΅ΡΡΡΠ΅). Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, ΡΠΈΡΡΠ°ΡΠΈΡ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ Π² ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΠΎΠΌ ΠΏΠΎΡΡΠ΄ΠΊΠ΅, ΠΈΡΡ ΠΎΠ΄Ρ ΠΈΠ· ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ Π²ΡΠ΅Π΄Π° Π΄Π»Ρ ΡΠ΅Π±Π΅Π½ΠΊΠ° ΠΈ ΠΏΠΎΠ»ΡΠ·Ρ Π΄Π»Ρ ΠΌΠ°ΡΠ΅ΡΠΈ.Β
ΠΡΠ»ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°ΡΡΠ½ΠΎΠ΅ Π²Π΅ΡΠ΅ΡΡΠ²ΠΎ (Π² ΠΠ’ Π·ΡΠ±ΠΎΠ² ΠΈ ΡΠ΅Π»ΡΡΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π½Π΅ ΡΠ°ΠΊ ΡΠ°ΡΡΠΎ), ΡΠΎ ΠΊ ΡΠΈΡΠ»Ρ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎΠ±Π°Π²ΠΈΡΡ:
- ΠΠ°ΡΠΈΠ΅Π½ΡΡ, ΡΡΡΠ°Π΄Π°ΡΡΠΈΠ΅ ΠΎΡ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΡΠΈΡΠΎΠ²ΠΈΠ΄Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ.
- ΠΠΎΡΠ΅ΡΠ½Π°Ρ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΡ.
- ΠΠ»Π»Π΅ΡΠ³ΠΈΡ Π½Π° ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠ΅ ΠΉΠΎΠ΄.
ΠΠ°ΠΊΡΠ°ΡΠΈΠΎΠ½Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΠ΅, Π½ΠΎ ΠΏΠΎΡΠ»Π΅ ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ Π΄ΠΎΠ»ΠΆΠ½ΠΎ ΠΏΡΠΎΠΉΡΠΈ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ 48 ΡΠ°ΡΠΎΠ² Π΄ΠΎ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π³ΠΎ ΠΊΠΎΡΠΌΠ»Π΅Π½ΠΈΡ Π³ΡΡΠ΄ΡΡ.
ΠΠΎΠΆΠ½ΠΎ Π»ΠΈ Π΄Π΅Π»Π°ΡΡ Π΄Π΅ΡΡΠΌ?
ΠΠ½ΠΎΠ³ΠΈΠ΅ ΡΠΎΠ΄ΠΈΡΠ΅Π»ΠΈ Π΄ΡΠΌΠ°ΡΡ, ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ 3D ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π² Π΄Π΅ΡΡΠΊΠΎΠΌ Π²ΠΎΠ·ΡΠ°ΡΡΠ΅ ΠΏΠΎ ΠΏΡΠΈΡΠΈΠ½Π΅ Π½Π΅Π³Π°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π²Π»ΠΈΡΠ½ΠΈΡ Π½Π° ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌ ΡΠ΅Π±Π΅Π½ΠΊΠ°. ΠΡΠΎ Π½Π΅ ΡΠΎΠ²ΡΠ΅ΠΌ ΡΠ°ΠΊ, Π²Π΅Π΄Ρ ΠΎΡΠΎΠ±ΠΎΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΠΊ Π΄Π°Π½Π½ΠΎΠΌΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΎΡΠ΄Π°Π΅ΡΡΡ ΠΈΠΌΠ΅Π½Π½ΠΎ Π² ΠΏΠ΅Π΄ΠΈΠ°ΡΡΠΈΠΈ.
ΠΡΠ»ΠΈ ΡΠΎΠ±Π»ΡΠ΄Π°ΡΡ Π²ΡΠ΅ ΠΏΡΠ°Π²ΠΈΠ»Π° Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ ΠΈ Π½Π΅ ΠΏΡΠ΅Π²ΡΡΠ°ΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΠΏΡΠΎΡΠ΅Π΄ΡΡ (Π΄Π»Ρ Π΄Π΅ΡΠ΅ΠΉ β 1 ΡΠ°Π· Π² Π³ΠΎΠ΄), ΡΠΎ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π΅ ΠΏΡΠΈΠ²Π΅Π΄Π΅Ρ ΠΊ ΠΊΠ°ΠΊΠΈΠΌ-Π»ΠΈΠ±ΠΎ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡΠΌ Π² Π΄Π΅ΡΡΠΊΠΎΠΌ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ΅.
3Π ΠΠ’ Π² Π΄Π΅ΡΡΠΊΠΎΠΉ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΡΠ΅Π½ΠΈΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ Π½ΠΎΡΠΎΠ²ΡΡ ΠΏΠ°Π·ΡΡ , Π΄Π΅ΡΠ΅Π½ ΠΈ ΡΠ²ΠΈΠ΄Π΅ΡΡ Π·Π°ΡΠ°ΡΠΊΠΈ ΠΌΠΎΠ»ΠΎΡΠ½ΡΡ Π·ΡΠ±ΠΎΠ². Π’Π°ΠΊΠΆΠ΅ ΡΡΠΎΡ ΠΌΠ΅ΡΠΎΠ΄ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π²ΡΡΠ²ΠΈΡΡ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΡΠΈΠΊΡΡΠ° Ρ ΡΠ΅Π±Π΅Π½ΠΊΠ°.
ΠΠ°ΠΊ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΈΡΡΡΡ ΠΊ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ
Π‘ΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ ΠΊΒ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π½Π΅Β ΡΡΠ΅Π±ΡΠ΅ΡΡΡ. ΠΠ΅ΡΠ΅Π΄ ΠΏΡΠΎΡΠ΅Π΄ΡΡΠΎΠΉ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ ΠΏΡΠΎΡΠΈΡ ΡΠ½ΡΡΡ ΡΠΊΡΠ°ΡΠ΅Π½ΠΈΡ ΠΈΒ ΡΠ±ΡΠ°ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠ³ΡΡ ΠΏΠΎΠΌΠ΅ΡΠ°ΡΡ ΡΠΊΠ°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ. ΠΡΠΈ Π½Π°Π»ΠΈΡΠΈΠΈ Π²ΠΎΒ ΡΡΡ ΠΎΡΡΠΎΠΏΠ΅Π΄ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΉ ΡΒ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΠΌΠΈ ΠΈΡ
Β ΠΏΡΠΈΠ΄Π΅ΡΡΡ ΡΠ±ΡΠ°ΡΡ.
ΠΠ΅ΡΠ΅Π΄ ΡΠ°ΠΌΠΎΠΉ ΠΏΡΠΎΡΠ΅Π΄ΡΡΠΎΠΉ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ»ΠΎΠ³ Π½Π°Π΄Π΅Π²Π°Π΅Ρ Π½Π°Β ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠΉ ΡΠ°ΡΡΡΠΊ, Π·Π°ΠΊΡΡΠ²Π°ΡΡΠΈΠΉ Π³ΡΡΠ΄Π½ΡΡ ΠΊΠ»Π΅ΡΠΊΡ ΠΈΒ ΠΆΠΈΠ²ΠΎΡ. ΠΠ°ΠΆΠ½ΡΠΌ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±ΡΠ΄Π΅Ρ ΠΈΒ ΡΠΎ, ΠΊΡΠΎ Π΅Π³ΠΎ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡ. ΠΠ΅Β ΠΈΡΠΊΠ»ΡΡΠ΅Π½Ρ ΡΠΈΡΡΠ°ΡΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° Π²Β ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ°Ρ
Π²ΠΌΠ΅ΡΡΠΎ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ»ΠΎΠ³Π° ΡΠ°Π±ΠΎΡΠ°Π΅Ρ ΠΎΠ±ΡΡΠ½Π°Ρ ΠΌΠ΅Π΄ΡΠ΅ΡΡΡΠ°, ΠΏΠΎΡΠΎΠΌΡ Π½Π΅Β Π»ΠΈΡΠ½ΠΈΠΌ Π±ΡΠ΄Π΅Ρ ΡΠΏΡΠΎΡΠΈΡΡ ΡΒ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡΠ° ΡΠ΄ΠΎΡΡΠΎΠ²Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΎΒ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠΈ ΠΊΠ²Π°Π»ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ Π²Β ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ³ΡΠ°ΡΠΈΠΈ.
Π‘ΠΊΠΎΠ»ΡΠΊΠΎ Π΄Π»ΠΈΡΡΡ ΠΏΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ?
ΠΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΡΠΈΠΏΠ° ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠ°. ΠΡΠ½ΠΎΠ²Π½Π°Ρ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΡ Π² ΡΡΠΎΠΌ Π²ΠΎΠΏΡΠΎΡΠ΅ β ΠΏΠ΅ΡΠ΅Π΄ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠΈΠ½ΡΠ΅ΡΠ΅ΡΠΎΠ²Π°ΡΡΡΡ ΡΠΈΠΏΠΎΠΌ ΡΡΡΡΠΎΠΉΡΡΠ²Π° ΠΈ Π²ΡΠ±ΠΈΡΠ°ΡΡ ΠΊΠ»ΠΈΠ½ΠΈΠΊΡ Ρ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌ Π°ΠΏΠΏΠ°ΡΠ°ΡΠΎΠΌ Π²ΡΡΠΎΠΊΠΎΠΉ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ. ΠΠ³ΠΎ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π° β Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½Π°Ρ Π΄ΠΎΠ·Π° ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ ΠΈ Π²ΡΡΠΎΠΊΠ°Ρ Π΄Π΅ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΡ, Π½ΠΎ ΠΈ Π½Π°ΠΌΠ½ΠΎΠ³ΠΎ ΠΌΠ΅Π½ΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ. ΠΠ»Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΡΠΊΠ°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΎΠΆΠ΅Ρ Π²Π°ΡΡΠΈΡΠΎΠ²Π°ΡΡΡΡ ΠΎΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΡΠ΅ΠΊΡΠ½Π΄ Π΄ΠΎ 15 ΠΌΠΈΠ½ΡΡ.
ΠΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠΉ Π²ΡΠ΅Π΄
ΠΠΎΠ½ΡΡΠ½ΠΎ-Π»ΡΡΠ΅Π²Π°Ρ Π΄Π΅Π½ΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½Π°Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ β ΡΡΠΎ ΡΠ°ΠΌΡΠΉ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΡΠΉ ΠΈ Π±ΡΡΡΡΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ. ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠΎΠ³ΠΎ Π»ΡΡΠ° ΠΊΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠΌΡ, ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌΠ°Ρ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π΄ΠΎΠ·Π° ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ, Π² 10 ΡΠ°Π· ΠΌΠ΅Π½ΡΡΠ΅, ΡΠ΅ΠΌ ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠΏΠΈΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΠ’. Π ΠΏΡΠ»ΡΡΠΈΡΡΡΡΠΈΠΉ ΡΠ΅ΠΆΠΈΠΌ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠΎΠ³ΠΎ Π»ΡΡΠ° Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ½ΠΈΠΆΠ°Π΅Ρ Π΄ΠΎΠ·Ρ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ. Π’ΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΡΠΉ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΡΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°Ρ SOREDEX Scanora 3D, ΠΎΡΠ½ΠΎΡΠΈΡΡΡ ΠΊ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΡΠΌ ΠΏΠΎ Π΄ΠΎΠ·Π΅ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠΎΠ³ΠΎ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ°ΠΌ β Π²ΡΠ΅Π³ΠΎ 0,035 ΠΌ3Π².
ΠΠ΄Π½Π°ΠΊΠΎ, Π½Π΅ΡΠΌΠΎΡΡΡ Π½Π° Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ, Ρ ΠΠ’ Π΅ΡΡΡ ΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΡ. ΠΡΠ»ΠΈ Π³ΠΎΠ²ΠΎΡΠΈΡΡ ΠΏΡΠΎΡΡΠΎ ΠΎ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ Π·ΡΠ±Π°, ΠΎΠ½Π° Π½Π΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΏΡΠΈ Π±Π΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΡΡΠΈ (Π² 1 ΡΡΠΈΠΌΠ΅ΡΡΡΠ΅). 3d ΡΠ΅Π½ΡΠ³Π΅Π½ Π·ΡΠ±ΠΎΠ² Ρ ΠΊΠΎΠ½ΡΡΠ°ΡΡΠΎΠΌ Π·Π°ΠΏΡΠ΅ΡΠ΅Π½ Π±Π΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌ ΠΈ ΠΊΠΎΡΠΌΡΡΠΈΠΌ ΠΆΠ΅Π½ΡΠΈΠ½Π°ΠΌ, ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°ΠΌ Ρ ΡΠ½Π΄ΠΎΠΊΡΠΈΠ½Π½ΡΠΌΠΈ Π½Π°ΡΡΡΠ΅Π½ΠΈΡΠΌΠΈ (ΡΠ°Ρ Π°ΡΠ½ΡΠΉ Π΄ΠΈΠ°Π±Π΅Ρ, ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ ΡΠΈΡΠΎΠ²ΠΈΠ΄Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ), ΠΏΠΎΡΠ΅ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΡΡ ΠΈ Π½Π΅ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠΈΠΌΠΎΡΡΡΡ ΠΉΠΎΠ΄ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΠΎΠ².
ΠΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π° ΠΌΠ΅ΡΠΎΠ΄Π°
- ΠΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΠΎΠ²Π΅ΡΠ½ΡΡΡ, ΡΠ²Π΅Π»ΠΈΡΠΈΡΡ, ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ ΡΠ½ΠΈΠΌΠΊΠΈ Π² Π»ΡΠ±ΠΎΠΉ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ, ΡΡΠΎ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈ ΠΎΠ±ΡΡΠ½ΠΎΠΌ 2-Ρ ΠΌΠ΅ΡΠ½ΠΎΠΌ ΡΠΊΠ°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ.
- ΠΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄Π»ΠΈΡΡΡ Π²ΡΠ΅Π³ΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ΅ΠΊΡΠ½Π΄ (8-20 ΡΠ΅ΠΊΡΠ½Π΄).
- ΠΠΎΠ»Π½Π°Ρ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ.
- ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΡ.
- Π¦ΠΈΡΡΠΎΠ²ΠΎΠΉ ΡΠΎΡΠΌΠ°Ρ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ.
- ΠΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΠ΅ Π»ΡΠ±ΡΡ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² Π½Π° ΡΠ°Π½Π½Π΅ΠΉ ΡΡΠ°Π΄ΠΈΠΈ.
- ΠΠ΅ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ°.
- Π’ΡΠ΅Ρ ΠΌΠ΅ΡΠ½Π°Ρ ΡΠ΅ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΡ Π±Π΅Π· ΠΈΡΠΊΠ°ΠΆΠ΅Π½ΠΈΡ ΠΈ Π°ΡΡΠ΅ΡΠ°ΠΊΡΠΎΠ².
- Π¨ΠΈΡΠΎΠΊΠΈΠΉ ΡΠΏΠ΅ΠΊΡΡ Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ β ΠΎΡ ΡΠ½Π΄ΠΎΠ΄ΠΎΠ½ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π»Π΅ΡΠ΅Π½ΠΈΡ Π·ΡΠ±ΠΎΠ² ΠΈ ΠΈΠΌΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ, Π΄ΠΎ ΡΠ΅Π»ΡΡΡΠ½ΠΎ-Π»ΠΈΡΠ΅Π²ΡΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΉ.
ΠΡΡΡ Π»ΠΈ Π°Π»ΡΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π° ΠΠ’
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π΄ΡΡΠ³ΠΈΡ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π²ΠΈΠ·ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ (ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ³ΡΠ°ΠΌΠΌΠ°, ΠΎΡΡΠΎΠΏΠ°Π½ΡΠΎΠΌΠΎΠ³ΡΠ°ΠΌΠΌΠ°, Π£ΠΠ ΠΈ Ρ.Π΄.), Π½ΠΎ Π»ΠΈΡΡ ΠΠ’ ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ Π²ΡΡΠΎΠΊΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ, ΡΠ°Π·Π΄Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ Π²ΡΠ΅Ρ ΡΠΈΠΏΠΎΠ² ΡΠΊΠ°Π½ΠΈ ΠΏΠΎΠ΄ ΡΠ°Π·Π½ΡΠΌ ΡΠ³Π»ΠΎΠΌ ΠΈ Π½Π° ΡΠ°Π·Π½ΡΡ Π³Π»ΡΠ±ΠΈΠ½Ρ. Π₯ΠΎΡΡ ΠΏΠ°Π½ΠΎΡΠ°ΠΌΠ½ΡΠΉ ΡΠ½ΠΈΠΌΠΎΠΊ Π·ΡΠ±ΠΎΠ² ΠΈ ΡΠ΅Π³ΠΎΠ΄Π½Ρ ΠΎΡΡΠ°Π΅ΡΡΡ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ Π²Π°ΠΆΠ½ΡΠΌΒ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠΎΠΌ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³Π°, ΠΎΠ½ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²ΠΈΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ±ΡΡΡ ΠΎΠ±Π·ΠΎΡΠ½ΡΡ ΠΊΠ°ΡΡΠΈΠ½Ρ. Π ΡΠ²ΠΎΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ, 3d ΡΠΎΠΌΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π½Π΅ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΡΠΉ ΠΏΠ»ΠΎΡΠΊΠΈΠΉ ΡΠ½ΠΈΠΌΠΎΠΊ ΡΠ΅Π»ΡΡΡΠΈ, Π° ΡΠ΅Π»ΡΠΉ ΡΡΠ΄ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΡ ΠΌΠ½ΠΎΠ³ΠΎΠΏΠ»ΠΎΡΠΊΠΎΡΡΠ½ΡΡ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΈ Π±Π΅Π· ΠΈΡΠΊΠ°ΠΆΠ΅Π½ΠΈΠΉ, ΠΏΡΠΈΡΡΡΠΈΡ ΠΏΠ°Π½ΠΎΡΠ°ΠΌΠ½ΠΎΠΌΡ ΡΠ½ΠΈΠΌΠΊΡ.
ΠΡΠΈΠΌΠ΅Ρ:ΠΈΠ·-Π·Π° ΡΠ°Π·Π½ΠΎΠΉ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ ΠΊΠΎΡΡΠ½ΡΡ ΡΡΡΡΠΊΡΡΡ, ΠΏΠΎΠΏΠ°Π²ΡΠΈΡ Π² Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ, Π½Π° 2-Ρ ΠΌΠ΅ΡΠ½ΠΎΠΌ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΈ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅ΡΡ ΠΌΠ΅Π½Π΅Π΅ ΠΏΠ»ΠΎΡΠ½ΡΡ ΠΊΠΎΡΡΡ, ΡΠΎΡΠ½ΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 3d ΡΠ½ΠΈΠΌΠΎΠΊ Π·ΡΠ±ΠΎΠ².
Π§ΡΠΎ Π»ΡΡΡΠ΅ β ΠΏΠ°Π½ΠΎΡΠ°ΠΌΠ½ΡΠΉ ΠΈΠ»ΠΈ 3D ΡΠ½ΠΈΠΌΠΎΠΊ
ΠΡΠ»ΠΈΡΠΈΠ΅ΠΌΒ ΠΠ’ ΠΎΡΒ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ ΠΎΡΡΠΎΠΏΠ°Π½ΡΠΎΠΌΠΎΠ³ΡΠ°ΠΌΠΌΡ Π±ΡΠ΄Π΅Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΡΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ. Π’Π°ΠΊΠΎΠΉ Π²Π°ΡΠΈΠ°Π½Ρ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ Π±ΠΎΠ»Π΅Π΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈΠ²Π½ΡΠΉ, Π½ΠΎΒ Π²Β Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΡΠ»ΡΡΠ°ΡΡ Π²Β ΡΡΠΎΠΌ Π½Π΅Ρ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ. ΠΡΡΠΎΠΏΠ°Π½ΡΠΎΠΌΠΎΠ³ΡΠ°ΠΌΠΌΠ° Π±ΡΠ²Π°Π΅Ρ Π°Π½Π°Π»ΠΎΠ³ΠΎΠ²ΠΎΠΉ ΠΈΒ ΡΠΈΡΡΠΎΠ²ΠΎΠΉ. ΠΠΎΡΠ»Π΅Π΄Π½ΡΡ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠΎΠΊΠΈΠΌ ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎΠΌ, ΠΈΒ ΡΠ½ΠΈΠΌΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΡ ΡΠ°Π½ΠΈΡΡ Π½Π°Β ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ Π½ΠΎΡΠΈΡΠ΅Π»ΠΈ. Π’Π°ΠΊΠΆΠ΅ ΡΡΠ° ΠΏΡΠΎΡΠ΅Π΄ΡΡΠ° ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΡΠΊΠΎΡΠΎΡΡΡΡ, Π²Π΅Π΄Ρ Π²Π΅ΡΡ ΠΏΡΠΎΡΠ΅ΡΡ ΡΠΊΠ°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π·Π°Π½ΠΈΠΌΠ°Π΅Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ΅ΠΊΡΠ½Π΄.
Π‘ΡΠ°Π½Π΄Π°ΡΡΠ½Π°Ρ ΠΎΡΡΠΎΠΏΠ°Π½ΡΠΎΠΌΠΎΠ³ΡΠ°ΠΌΠΌΠ°
ΠΠ°Π½ΠΎΡΠ°ΠΌΠ½ΡΠΉ ΡΠ½ΠΈΠΌΠΎΠΊ ΠΌΠΎΠΆΠ½ΠΎ Π΄Π΅Π»Π°ΡΡ Π²ΡΠ΅ΠΌ, Π²ΠΊΠ»ΡΡΠ°Ρ ΠΌΠ°Π»Π΅Π½ΡΠΊΠΈΡ Π΄Π΅ΡΠ΅ΠΉ, Π½ΠΎΒ Π½Π΅ΡΠ°ΡΡΠΎ. ΠΠΎΠ»Π΅Π΅ ΡΠΎΠ³ΠΎ, ΠΈΠΌΠ΅Π½Π½ΠΎ Π΄Π»Ρ ΡΠ΅Π±Π΅Π½ΠΊΠ° ΠΎΠ½Β ΠΈΠΌΠ΅Π΅Ρ ΠΏΠ΅ΡΠ²ΠΎΡΡΠ΅ΠΏΠ΅Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, Π²Π΅Π΄Ρ ΡΡΠΎ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ Π²ΠΈΠ·ΡΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ Π·ΡΠ±Π½ΠΎΠΉ ΡΡΠ΄ Π΄Π»Ρ ΠΏΡΠ΅Π΄ΡΠΏΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌ ΡΒ ΠΏΡΠΈΠΊΡΡΠΎΠΌ ΠΈΒ ΡΠ°Π½Π½Π΅ΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ.
ΠΠ°ΠΊ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΠΏΡΠΎΡΠ΅Π΄ΡΡΠ° ΠΈ ΡΠ°ΡΡΠΈΡΡΠΎΠ²ΠΊΠ°
Π§ΡΠΎΠ±Ρ ΡΠ΄Π΅Π»Π°ΡΡ 3D ΡΠ½ΠΈΠΌΠΎΠΊ Π·ΡΠ±ΠΎΠ², ΡΡΠΎΡΡΠ΅ΠΌΡ ΠΈΠ»ΠΈ ΡΠΈΠ΄ΡΡΠ΅ΠΌΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π·Π°ΠΊΡΡΠΈΡΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ ΠΏΠ»Π°ΡΡΠΈΠ½Ρ ΠΈ Π·Π°ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°ΡΡ ΡΠ²ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π² Π°ΠΏΠΏΠ°ΡΠ°ΡΠ΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΈΠΊΡΠΈΡΡΡΡΠ΅ΠΉ ΡΡΠΎΠΉΠΊΠΈ. Π ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅Π³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ ΡΠΊΠ°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π½ΡΠΆΠ½ΠΎ ΡΠΎΠ±Π»ΡΠ΄Π°ΡΡ Π°Π±ΡΠΎΠ»ΡΡΠ½ΡΡ Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΡΡΡ.
Π‘Π΅Π½ΡΠΎΡ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠ° Π½Π° ΠΏΡΠΎΡΡΠΆΠ΅Π½ΠΈΠΈ 8-20 ΡΠ΅ΠΊΡΠ½Π΄ ΡΠΎΠ²Π΅ΡΡΠ°Π΅Ρ ΡΡΠ΄ ΠΎΠ±ΠΎΡΠΎΡΠΎΠ² Π²ΠΎΠΊΡΡΠ³ Π³ΠΎΠ»ΠΎΠ²Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°, ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Ρ ΠΎΠΊΠΎΠ»ΠΎ 200 ΡΠ½ΠΈΠΌΠΊΠΎΠ² Π² ΡΠ°Π·Π½ΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΡ . ΠΠ±ΡΠ°Π±ΠΎΡΠΊΠ° ΡΠΈΡΡΠΎΠ²ΡΡ Π΄Π°Π½Π½ΡΡ Π·Π°Π½ΠΈΠΌΠ°Π΅Ρ 5-15 ΠΌΠΈΠ½ΡΡ ΠΏΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ Π·Π°ΠΏΠΈΡΡΠ²Π°Π΅ΡΡΡ Π½Π° Π΄ΠΈΡΠΊ ΠΈΠ»ΠΈ ΡΠ»Π΅Ρ-Π½Π°ΠΊΠΎΠΏΠΈΡΠ΅Π»Ρ. ΠΠΈΠΊΠ°ΠΊΠΎΠΉ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ Π½Π΅ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ, Π½ΡΠΆΠ½ΠΎ Π»ΠΈΡΡ ΡΠ½ΡΡΡ ΠΏΠ΅ΡΠ΅Π΄ ΠΏΡΠΎΡΠ΅Π΄ΡΡΠΎΠΉ Π²ΡΠ΅ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΊΡΠ°ΡΠ΅Π½ΠΈΡ Ρ ΡΠ΅ΠΈ, ΡΡΠ΅ΠΉ, Π²ΠΎΠ»ΠΎΡ.
ΠΠ°ΠΊ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ½ΠΈΠΌΠΎΠΊ
ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΏΡΠΈ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ Π΄Π°Π½Π½ΡΠ΅ ΠΈΠΌΠ΅ΡΡ Π²ΠΈΠ΄ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΉ. ΠΠ»Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΠΎΠ±ΡΡΠΌΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½Π°Ρ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ° ΡΠΎΠ±ΠΈΡΠ°Π΅Ρ ΠΈΡ Π² ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎΠ΅ ΡΠ΅Π»ΠΎΠ΅. ΠΡΠ»ΠΈ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ°Ρ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ° ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ Π² ΠΊΠ°Π±ΠΈΠ½Π΅ΡΠ΅, ΠΎΡΠ½Π°ΡΡΠ½Π½ΠΎΠΌ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ ΡΠ΅Ρ Π½ΠΈΠΊΠΎΠΉ, Π²ΡΠ°Ρ ΠΎΡΠΊΡΡΠ²Π°Π΅Ρ ΡΠ½ΠΈΠΌΠΎΠΊ Π² ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΌ Π²ΠΈΠ΄Π΅ Ρ ΡΠΈΡΡΠΎΠ²ΠΎΠ³ΠΎ Π½ΠΎΡΠΈΡΠ΅Π»Ρ. ΠΠΎΡΠ»Π΅Π΄Π½ΠΈΠΉ Π²ΡΠ΄Π°ΡΡΡΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ ΠΏΠΎΡΠ»Π΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ. ΠΠ»Ρ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠ»Π΅Π½ΠΈΡ Ρ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠΎΠΉ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ ΠΌΠΎΠΆΠ΅Ρ ΠΏΠΎΠΊΡΡΡΠΈΡΡ ΠΌΠΎΠ΄Π΅Π»Ρ, Π½Π°ΠΉΠ΄Ρ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΡΡΡΡ ΠΎΠ±Π»Π°ΡΡΡ, Π° ΡΠ°ΠΊΠΆΠ΅ Π²ΡΠ²Π΅ΡΡΠΈ Π½Π° ΡΠΊΡΠ°Π½ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡ Π·ΡΠ±ΠΎΠ². ΠΠ½Π»Π°ΠΉΠ½ Π΄ΠΎΡΡΡΠΏΠ½Ρ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ ΠΌΠ΅Π»ΠΊΠΈΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ², ΡΠΎΠ·Π΄Π°Π½ΠΈΠ΅ ΡΡΠ΅Π·ΠΎΠ², ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΡ Π·Π°ΠΌΠ΅ΡΠΎΠ² ΠΈ ΠΏΡΠΎΡΠΈΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ.
ΠΡΠ°Ρ ΠΌΠΎΠΆΠ΅Ρ Π·Π°ΠΏΡΠΎΡΠΈΡΡ Π½Π°ΠΏΠ΅ΡΠ°ΡΠ°Π½Π½ΡΠΉ ΡΠ½ΠΈΠΌΠΎΠΊ ΠΎΠ±ΡΡΠΌΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠ΅Π»ΡΡΡΠΈ. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ Π²ΡΠ΄Π°ΡΡ Π½Π° ΡΡΠΊΠΈ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π² ΡΠΎΡΠΌΠ°ΡΠ΅ 8Γ5 Π»ΠΈΠ±ΠΎ 5Γ5 ΡΠΌ. ΠΠ° Π½ΠΈΡ Π·Π°ΠΏΠ΅ΡΠ°ΡΠ»Π΅ΡΡΡΡ Π΄ΠΎ Π΄Π΅ΡΡΡΠΊΠ° ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΉ ΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ. ΠΡΠΎΡ Π²Π°ΡΠΈΠ°Π½Ρ ΡΡΠΈΡΠ°Π΅ΡΡΡ ΠΌΠ΅Π½Π΅Π΅ ΡΠ΄ΠΎΠ±Π½ΡΠΌ ΠΏΡΠΈ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ΅ ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ Π² ΠΊΠ°Π±ΠΈΠ½Π΅ΡΠ°Ρ , Π½Π΅ ΠΎΠ±ΠΎΡΡΠ΄ΠΎΠ²Π°Π½Π½ΡΡ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ ΡΠ΅Ρ Π½ΠΈΠΊΠΎΠΉ.
Π§ΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±Π½Π°ΡΡΠΆΠΈΡΡ
3D-ΡΠ΅Π½ΡΠ³Π΅Π½ Π·ΡΠ±ΠΎΠ² Π΄Π°ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΡΠ»Π΅Π΄ΡΡΡΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ:
- Π²ΠΈΠ·ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π·ΡΠ±ΠΎΠ² ΠΈ Π΄ΡΡΠ΅Π½ Π² ΡΡΡΡ ΠΌΠ΅ΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ;
- Π½Π°Π»ΠΈΡΠΈΠ΅ ΠΈ ΡΠ°Π·ΠΌΠ΅ΡΡ ΠΎΡΠ°Π³ΠΎΠ² ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΉ;
- ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π»Π΅ΡΠ΅Π½ΠΈΡ Π»ΠΈΠ±ΠΎ Ρ ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ;
- ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Ρ Π°ΡΠ°ΠΊΡΠ΅Ρ ΠΈ ΡΠ°Π·ΠΌΠ΅ΡΡ Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ, ΠΊΠΈΡΡ ΠΈ Π΄ΡΡΠ³ΠΈΡ ΠΎΠΏΡΡ ΠΎΠ»Π΅ΠΉ;
- ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΡΠ΅Π»ΡΡΡΠΈ ΠΈ Π΅Ρ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ;
- Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΈΠΊΡΠ°ΡΠΈΡ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Π½Π΅ΡΠ²ΠΎΠ²;
- ΠΏΠΎΠ΄ΡΡΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΠΊΠΎΡΡΠ½ΠΎΠΉ ΡΠΊΠ°Π½ΠΈ.
ΠΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΠ’ΠΠ Π² ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ
Π ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ ΠΊΠΎΠ½ΡΡΠ½ΠΎ-Π»ΡΡΠ΅Π²Π°Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ ΡΠ΅Π»ΡΡΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ»ΠΎΠΆΠ½ΡΡ Π·Π°Π΄Π°Ρ:
- ΡΠ΄Π°Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΡΠ½Π΅ΠΉ ΠΈΠ»ΠΈ Β«Π²ΠΎΡΡΠΌΠ΅ΡΠΎΠΊΒ»;
- ΠΈΠ·Π²Π»Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΈΠ½ΠΎΡΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ΅Π»Π°, ΠΎΠ±Π»ΠΎΠΌΠΊΠ°;
- ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠ°Π½Π°Π»ΠΎΠ²;
- ΠΈΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΡΠ΅Π»ΡΡΡΠΈ;
- Π²ΡΡΠ²Π»Π΅Π½ΠΈΠ΅ Π΄Π΅ΡΡΡΡΠΊΡΠΈΠΈ ΠΊΠΎΡΡΠ½ΠΎΠΉ ΡΠΊΠ°Π½ΠΈ;
- ΠΎΡΠ΅Π½ΠΊΠ° ΠΏΠ΅ΡΠΈΠ°ΠΏΠΈΠΊΠ°Π»ΡΠ½ΡΡ ΡΠΊΠ°Π½Π΅ΠΉ Π΄Π΅Π½ΡΠΈΠ½Π° Π·ΡΠ±ΠΎΠ²;
- ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΠ΅ Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΉ ΠΈ Π²ΡΠΎΠΆΠ΄Π΅Π½Π½ΡΡ Π΄Π΅ΡΠ΅ΠΊΡΠΎΠ²;
- ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ° ΠΊ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠ΅ ΠΈΠΌΠΏΠ»Π°Π½ΡΠ°.
ΠΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΎΡΡΠ°Π΅ΡΡΡ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΎΠΉ Π² ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠ΅ΠΉ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎ ΠΎΡΠ΅Π½ΠΈΡΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ°Π½Π°Π»ΠΎΠ², ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΏΡΠ»ΡΠΏΡ, Π½Π°Π»ΠΈΡΠΈΠ΅ Π½Π΅ΡΠ²Π½ΡΡ ΠΎΠΊΠΎΠ½ΡΠ°Π½ΠΈΠΉ. ΠΡΠΎ Π²Π°ΠΆΠ½Π°Ρ ΡΠ°ΡΡΡ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠ΅ΡΠ΅Π΄ ΡΠ»ΠΎΠΆΠ½Π΅ΠΉΡΠΈΠΌΠΈ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΡΠΌΠΈ Π½Π° Π½Π°Π΄ΠΊΠΎΡΡΠ½ΠΈΡΠ΅, Π²ΠΆΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΎΡΡΠ΅ΠΎΠΏΡΠΎΡΠ΅Π·Π°.
ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ Π²ΡΡΠΎΠΊΠΎΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈΠ²Π½ΠΎΡΡΠΈ Π² Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°Π· ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ ΡΠΈΡΠΊ ΠΎΡΡΠΎΡΠΆΠ΅Π½ΠΈΡ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠΈΡΡΠ° ΠΈ Π΄ΡΡΠ³ΠΈΡ ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠΉ. ΠΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π° ΠΠΠΠ’ ΡΠ΅Π»ΡΡΡΠΈ ΠΏΠ΅ΡΠ΅Π΄ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ°ΠΌΠΈ:
- ΠΠΎΠΌΡΠΎΡΡ Π΄Π»Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°, ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ Π½Π΅ΠΏΡΠΈΡΡΠ½ΡΡ ΠΎΡΡΡΠ΅Π½ΠΈΠΉ, ΡΡΠΎ Π½Π΅ΠΌΠ°Π»ΠΎΠ²Π°ΠΆΠ½ΠΎ Π΄Π»Ρ Π»ΡΠ΄Π΅ΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ Ρ Π±ΠΎΡΠ·Π½ΡΡ ΠΈΠ΄ΡΡ ΠΊ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³Π°ΠΌ.
- ΠΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ Π·Π°ΡΡΠ°ΡΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π½Π° ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅, ΡΡΠΎ ΡΠΎΠΊΡΠ°ΡΠ°Π΅Ρ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠΎΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΊΠ°Π±ΠΈΠ½Π΅ΡΠ°.
- ΠΠ»Ρ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π·ΡΠ±Π½ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ² ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΠΠΠ’ ΡΠ²Π»ΡΠ΅ΡΡΡ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠΉ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡΡ Π²ΡΠΌΠ΅ΡΡΡΡ Π΄Π»ΠΈΠ½Ρ. ΠΡΠ°ΡΡ Π»Π΅Π³ΡΠ΅ ΠΏΠΎΠ΄ΠΎΠ±ΡΠ°ΡΡ ΠΈΠ΄Π΅Π°Π»ΡΠ½ΡΡ ΡΠΎΡΠΌΡ ΠΏΠ»ΠΎΠΌΠ±Ρ ΠΈΠ»ΠΈ ΡΡΠΈΡΡΠ°.
ΠΡΠΎΠΌΠ΅ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π·ΡΠ±ΠΎΠ² ΠΈ ΠΊΠΎΡΡΠ΅ΠΉ, ΠΠΠΠ’ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΡΠΌΠΎΡΡΠ΅ΡΡ ΠΌΡΠ³ΠΊΠΈΠ΅ ΡΠΊΠ°Π½ΠΈ. ΠΡΠΎ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ ΡΠ²ΠΎΠ΅Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ ΠΎΠ±Π½Π°ΡΡΠΆΠΈΡΡ ΠΊΠΈΡΡΡ Π² ΠΊΠΎΡΠ½Π΅ ΠΌΠΎΠ»ΡΡΠ°, ΡΠ²ΠΈΡ ΠΈΠ»ΠΈ ΠΎΠ½ΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΡΡ ΠΎΠΏΡΡ ΠΎΠ»Ρ Π² ΠΏΠΎΠ»ΠΎΡΡΠΈ ΡΡΠ°, ΠΏΠΎΠ΄ΠΎΠ±ΡΠ°ΡΡ Π»Π΅ΡΠ΅Π±Π½ΡΠ΅ ΡΡΠ΅Π΄ΡΡΠ²Π°. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ Π² ΠΏΠΎΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΏΡΠΈ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ. Π‘ΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈ ΠΌΠΎΠ³ΡΡ ΡΠΎΡΡΠ°Π²ΠΈΡΡ Π²ΠΈΠ·ΡΠ°Π»ΡΠ½ΡΡ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΈ ΠΏΠΎΠΊΠ°Π·Π°ΡΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ, ΠΊΠ°ΠΊ Π±ΡΠ΄Π΅Ρ Π²ΡΠ³Π»ΡΠ΄Π΅ΡΡ Π»ΠΈΡΠΎ ΠΏΠΎΡΠ»Π΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ Π²ΡΠ΅Ρ ΠΏΡΠΎΡΠ΅Π΄ΡΡ, ΡΠ±Π΅Π΄ΠΈΡΡΡΡ Π² ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΠ΅ ΠΊΠΎΡΠΎΠ½ΠΎΠΊ.
ΠΠΎΠ·Π° ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ
ΠΠ½ΠΎΠ³ΠΈΠ΅ Π»ΡΠ΄ΠΈ Π·Π°Π΄Π°ΡΡΡΡ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌ Π²ΠΎΠΏΡΠΎΡΠΎΠΌ, ΠΊΠ°ΠΊΠΎΠ²Π° Π΄ΠΎΠ·Π° ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌΡΡ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΠΉ Ρ ΠΊΠΎΠ½ΡΡΠ½ΠΎ-Π»ΡΡΠ΅Π²ΠΎΠΉ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ. Π£ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π½Π°Π³ΡΡΠ·ΠΊΠ° ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠΈΠΌΠΈ Π»ΡΡΠ°ΠΌΠΈ Π³ΠΎΡΠ°Π·Π΄ΠΎ Π½ΠΈΠΆΠ΅, ΡΠ΅ΠΌ ΠΏΡΠΈ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠΏΠΈΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠ΅ΠΉ. ΠΡΠΎ ΡΠ²ΡΠ·Π°Π½ΠΎ Ρ Π²ΡΡΠΎΠΊΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΡΡΡΠ±ΠΊΠΈ. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ Π½Π΅ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΠ°ΠΌΠΎΠΌΡ ΡΠ΅Π±Π΅ Π½Π°Π·Π½Π°ΡΠ°ΡΡ Π΄Π°Π½Π½ΡΡ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΡ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠΎΠ»ΡΠΊΠΎ Π²ΡΠ°Ρ ΠΌΠΎΠΆΠ΅Ρ ΠΎΡΠ΅Π½ΠΈΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ Π΅Π΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ.
Π ΡΠΎΠΌΡ ΠΆΠ΅ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΡΠΈΡΡΠ²Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠ°ΠΊΡΠΎΡΡ:
- ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΎΠ±ΡΡΠ½ΠΎΠΉ ΡΠ»ΡΠΎΡΠΎΠ³ΡΠ°ΡΠΈΠΈ Π΄Π°Π΅Ρ ΠΎΠ±Π»Π΅ΡΠ΅Π½ΠΈΠ΅ 0,18 ΠΌΠΠ²;
- ΠΎΡ Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠΎΠ½Π° ΠΠ΅ΠΌΠ»ΠΈ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊ ΠΏΠΎΠ»ΡΡΠ°Π΅Ρ ΡΠ°Π΄ΠΈΠ°ΡΠΈΡ ΠΎΠΊΠΎΠ»ΠΎ 1000 ΠΌΠΊΠΠ²;
- ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½ΠΎ Π΄ΠΎΠΏΡΡΡΠΈΠΌΠΎΠΉ Π΄ΠΎΠ·ΠΎΠΉ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΉ Π½Π΅ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ ΡΠ΅Π»ΠΎΠ²Π΅ΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ 5000 ΠΌΠΊΠΠ².
Π ΡΠ²ΡΠ·ΠΈ Ρ ΠΊΠΎΡΠΎΡΠΊΠΈΠΌ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ, Ρ ΠΊΠΎΠ½ΡΡΠ½ΠΎ-Π»ΡΡΠ΅Π²ΠΎΠΉ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ Π»ΡΡΠ΅Π²Π°Ρ Π½Π°Π³ΡΡΠ·ΠΊΠ° Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ 40β120 ΠΌΠΠ². ΠΡΠ»ΠΈ ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅ΡΠ΅ΠΏΠ° ΡΠΏΠΈΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠ΅ΠΉ, ΡΠΎ Π»ΡΡΠ΅Π²ΠΎΠ΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠ²Π΅Π»ΠΈΡΠΈΡΡΡ ΠΎΡ 400 Π΄ΠΎ 600 ΠΌΠΠ². ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²Π΅ΡΠΊΠΈ Π½Π° ΠΊΠΎΠ½ΡΡΠ½ΠΎΠΌ-Π»ΡΡΠ΅Π²ΠΎΠΌ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΈΡΠΊΠ»ΡΡΠΈΡΡ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π΅ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ Π΄ΡΡΠ³ΠΈΡ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ, ΡΠΎ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ Π½Π΅Π²ΡΡΠΎΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Ρ Π»ΡΡΠ΅Π²Π°Ρ Π½Π°Π³ΡΡΠ·ΠΊΠ° Π½Π° ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠ³ΠΎ.
ΠΠ΄Π΅ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅
ΠΡΠΈΠ½ΡΠΈΠΏ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΊΠΎΠ½ΡΡΠ½ΠΎΠΉ-Π»ΡΡΠ΅Π²ΠΎΠΉ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ ΠΎΡΠ½ΠΎΠ²Π°Π½ Π½Π° Π²ΠΈΠ·ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΎΠ±ΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠΉ Π·ΠΎΠ½Ρ. ΠΠ°Π½Π½ΡΠΉ Π°ΠΏΠΏΠ°ΡΠ°Ρ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ½ΠΎΠΉ Π·ΠΎΠ½Ρ, Π½ΠΎ ΠΈ ΡΠ²ΠΎΠ΅ΠΉ ΠΊΠΎΠΌΠΏΠ°ΠΊΡΠ½ΠΎΡΡΡΡ, Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΡΡ. ΠΠΏΠ΅ΡΠ²ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π½Π° Π½Π΅ΠΌ Π½Π°ΡΠ°Π»ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡΡΡ Π² Π‘Π¨Π, Π·Π°ΡΠ΅ΠΌ ΠΏΠΎΠΏΠ°Π»ΠΈ Π² ΠΠ²ΡΠΎΠΏΡ.
Π‘ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ Π°ΠΏΠΏΠ°ΡΠ°ΡΡ ΠΎΡΠ½Π°ΡΠ΅Π½Ρ ΡΠΎΠ±ΠΎΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΡΠΊΠΎΠΉ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠ΅ΠΉ Π²ΡΠ±ΡΠ°ΡΡ Π½ΡΠΆΠ½ΡΡ ΡΡΠ°Π΅ΠΊΡΠΎΡΠΈΡ Π΄Π»Ρ Π·Π°Π΄Π°ΡΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ Π΄Π°ΡΡΠΈΠΊΠ°. Π ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΌ ΠΎΠ½ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π° Π½Π΅Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΏΠΎ ΡΠ°Π·ΠΌΠ΅ΡΡ ΠΎΠ±Π»Π°ΡΡΠΈ, Π½ΠΎ, Π΅ΡΠ»ΠΈ ΠΈΠΌΠ΅Π΅ΡΡΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ, ΡΠΎ Π΄Π»Ρ ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΠΌΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΡΠΊΠ»Π΅ΠΈΠ²Π°Π½ΠΈΡ.
ΠΡΠΎΡ Π²ΠΈΠ΄ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ ΡΠΈΡΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π΄Π»Ρ Π²ΡΡΠ²Π»Π΅Π½ΠΈΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌ Π² ΡΠ»Π΅Π΄ΡΡΡΠΈΡ ΡΡΠ΅ΡΠ°Ρ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ:
- Π’Π΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π²ΡΡΠ²ΠΈΡΡ ΠΎΡΡΡΡΠ΅ Π²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π·ΡΠ±ΠΎΠ², Π½ΠΎ ΠΈ ΠΎΠΊΡΡΠΆΠ°ΡΡΠΈΡ ΠΈΡ ΠΌΡΠ³ΠΊΠΈΡ ΡΠΊΠ°Π½Π΅ΠΉ. ΠΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π΄Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΊΠ°Π½Π°Π»ΠΎΠ², ΡΠ°ΡΠΏΠΎΠ·Π½Π°Π²Π°Π½ΠΈΡ ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠ°Π·ΡΡΡΠ΅Π½ΠΈΡ ΠΊΠΎΡΠ½Ρ Π·ΡΠ±Π°, ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ.
- Π₯ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΌΠ΅ΡΡΠΎΠ½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π²ΠΎΡΠΏΠ°Π»Π΅Π½ΠΈΡ, Π΅Π³ΠΎ ΡΠ°Π·ΠΌΠ΅Ρ, ΠΌΠ΅ΡΡΠΎ Π·Π°Π±ΠΎΡΠ° ΠΊΠΎΡΡΠΈ Π΄Π»Ρ ΠΈΠΌΠΏΠ»Π°Π½ΡΠ°ΡΠ°. ΠΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π΄Π»Ρ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΡ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΉ, ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π²ΡΠΈΡ ΡΡ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ Π½ΠΈΠ·ΠΊΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ, Ρ ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π²ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΡΡΠ²Π°, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠ±Π½Π°ΡΡΠΆΠΈΡΡ ΠΎΡΡΠ°Π²ΡΠΈΠ΅ΡΡ ΠΏΠΎΡΠ»Π΅ ΡΠ΄Π°Π»Π΅Π½ΠΈΡ ΡΠ°ΡΡΠΈ Π·ΡΠ±Π°.
- Π ΠΎΡΡΠΎΠΏΠ΅Π΄ΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠΎΡΠ½ΠΎ ΡΠΎΡΡΠ°Π²ΠΈΡΡ ΠΏΠ»Π°Π½ Π»Π΅ΡΠ΅Π½ΠΈΡ, ΠΎΡΠ΅Π½ΠΈΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΠΏΠΎΡΠ½ΠΎΠ³ΠΎ Π·ΡΠ±Π°, ΡΠ²ΠΎΠ΅Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ Π²ΡΡΠ²ΠΈΡΡ ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΡ, ΡΠ°Π·Π²ΠΈΠ²Π°Π²ΡΠΈΠ΅ΡΡ ΠΈΠ·-Π·Π° ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΈ.
- Π ΠΎΡΡΠΎΠ΄ΠΎΠ½ΡΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π΄Π»Ρ ΠΏΠ»Π°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎ ΠΏΡΠΈΠ½ΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΡΡΡΡΠ°Π½Π΅Π½ΠΈΡ Π·ΡΠ±ΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠ΅ΡΠ°ΡΡ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΡ ΠΏΡΠΎΡΠ΅Π·Π°.
Π‘ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π΄ΠΎΠΊΡΠΎΡΡ ΠΏΠΎΠ»ΡΡΠ°ΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π½Π° ΡΠ²ΠΎΠΉ ΠΊΠΎΠΌΠΏΡΡΡΠ΅Ρ
Π¨ΠΈΡΠΎΠΊΠΎ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΡΠ½ΠΎ-Π»ΡΡΠ΅Π²ΠΎΠΉ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π² ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ, Π½ΠΎ ΠΈ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌ:
- Π² ΠΈΠΌΠΏΠ»Π°Π½ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΈΡΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° ΠΊ ΠΈΠΌΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ, ΠΎΡΠ΅Π½ΠΈΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΊΠΎΡΡΠ΅ΠΉ, ΠΏΠΎΠ»ΡΡΠΈΡΡ ΡΠΎΡΠ½ΡΠ΅ ΡΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΎ ΠΌΠ΅ΡΡΠ΅, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΡΡΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠ°Π½ΠΈΠΏΡΠ»ΡΡΠΈΠΈ;
- Π§ΠΠ₯ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π΄Π»Ρ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π½ΠΈΡ ΡΡΠ°Π²ΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΊΠΎΡΡΠΈ, ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΈΡ ΠΎΠΏΡΡ ΠΎΠ»Π΅Π²ΡΡ Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ, ΡΠ΅ΡΠ°ΠΏΠΈΠΈ Π²ΠΎΡΠΏΠ°Π»Π΅Π½ΠΈΠΉ;
- ΠΎΡΠΎΡΠΈΠ½ΠΎΠ»Π°ΡΠΈΠ½Π³ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΡΠ΅Π½ΠΈΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΏΠΎΠ»ΠΎΡΡΠΈ Π½ΠΎΡΠ°, Π΅Π³ΠΎ ΠΏΠ°Π·ΡΡ , ΠΏΡΠΈΠ½ΡΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΎ ΡΠ΅Π»Π΅ΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎΡΡΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΉ, ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΠΎΠ²Π°ΡΡ ΠΈ ΠΊΠΎΡΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°ΡΡ Π»Π΅ΡΠ΅Π½ΠΈΠ΅.
ΠΠ°Π½Π½ΡΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΈΠΌΠ΅ΡΡ Π½Π΅Π±ΠΎΠ»ΡΡΡΡ ΠΎΠ±Π»Π°ΡΡΡ ΡΠΊΠ°Π½ΠΈΡΠΎΠ²Π°Π½ΠΈΡ, ΠΎΠ±ΡΡΠ½ΠΎ ΡΡΠΎ ΠΎΡΠ΅Π½ΠΊΠ° ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ ΡΠ΅Π»ΡΡΡΠ½ΡΡ ΠΊΠΎΡΡΠ΅ΠΉ, Π½ΠΎΡΠΎΠ²ΠΎΠΉ ΠΏΠ΅ΡΠ΅Π³ΠΎΡΠΎΠ΄ΠΊΠΈ, ΠΌΡΠ³ΠΊΠΈΡ , ΠΊΠΎΡΡΠ½ΡΡ ΡΠΊΠ°Π½Π΅ΠΉ ΡΠ΅ΡΠ΅ΠΏΠ½ΠΎΠΉ ΠΊΠΎΡΠΎΠ±ΠΊΠΈ. Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ ΡΡΠΎΡ ΠΌΠ΅ΡΠΎΠ΄ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π΄Π»Ρ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π²ΡΠΎΠΆΠ΄Π΅Π½Π½ΡΡ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΉ Π½Π΅Π±Π°, ΠΏΠΎΠ΄Π±ΠΎΡΠ° ΠΈΠΌΠΏΠ»Π°Π½ΡΠ°ΡΠΎΠ², ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±ΠΎΠ»Π΅Π·Π½Π΅ΠΉ Π½ΠΎΡΠΎΠ²ΡΡ ΠΏΠ°Π·ΡΡ , Π°Π½ΠΎΠΌΠ°Π»ΡΠ½ΡΡ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π·ΡΠ±ΠΎΠ², ΠΊΠΎΠ³Π΄Π° Π΄ΡΡΠ³ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ Π½Π΅ Π΄Π°ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ Π²ΡΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΠΎΡΠ½ΠΎΠ³ΠΎ Π΄ΠΈΠ°Π³Π½ΠΎΠ·Π°.
ΠΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΡ Π΄Π»Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ
Π₯ΠΎΡΡ ΠΌΠ΅ΡΠΎΠ΄ ΠΊΠΎΠ½ΡΡΠ½ΠΎ-Π»ΡΡΠ΅Π²ΠΎΠΉ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ ΡΡΠΈΡΠ°Π΅ΡΡΡ ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠ΅ΠΉ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠ΅ΠΉ ΡΠΎΡΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΡΠΈΡΡΠ²Π°ΡΡ, ΡΡΠΎ ΠΎΠ½ ΠΎΡΠ½ΠΎΡΠΈΡΡΡ ΠΊ ΡΠ°Π·ΡΡΠ΄Ρ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ ΠΈ ΠΏΠΎΡΡΠΎΠΌΡ ΡΡΠ΅Π±ΡΠ΅Ρ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΎΡΡΠΎΡΠΎΠΆΠ½ΠΎΡΡΠΈ. ΠΡΠ΅ΠΆΠ΄Π΅ Π²ΡΠ΅Π³ΠΎ Π΅Π³ΠΎ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎ Π½Π°Π·Π½Π°ΡΠ°ΡΡ:
- Π΄Π»Ρ Π΄Π΅ΡΠ΅ΠΉ, Π½Π΅ Π΄ΠΎΡΡΠΈΠ³ΡΠΈΡ 5-Π»Π΅ΡΠ½Π΅Π³ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ°. ΠΠ»Ρ Π΄Π°Π½Π½ΠΎΠΉ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ ΡΡΠΎΡ ΠΌΠ΅ΡΠΎΠ΄ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠΎΠΆΠ΅Ρ Π½Π°Π·Π½Π°ΡΠ°ΡΡΡΡ Π»ΠΈΡΡ ΠΏΡΠΈ Π½Π°Π»ΠΈΡΠΈΠΈ ΠΆΠΈΠ·Π½Π΅Π½Π½ΡΡ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΠΉ;
- Π»ΠΈΡ, ΡΡΡΠ°Π΄Π°ΡΡΠΈΡ ΠΏΠΎΡΠ΅ΡΠ½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎΡΡΡΡ;
- Π»ΡΠ΄Π΅ΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ ΠΌΠΎΠ³ΡΡ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡΡ Π² Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ Π½Π° ΠΏΡΠΎΡΡΠΆΠ΅Π½ΠΈΠΈ 2β3 ΠΌΠΈΠ½ΡΡ;
- ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ ΠΈΠΌΠ΅ΡΡ ΡΡΠΊΠΎ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΡΠΉ Π±ΠΎΠ»Π΅Π²ΠΎΠΉ ΡΠΈΠ½Π΄ΡΠΎΠΌ;
- Π±Π΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ ΠΆΠ΅Π½ΡΠΈΠ½.
Π ΠΏΠ΅ΡΠΈΠΎΠ΄ Π±Π΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΡΡΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Π»ΡΠ±ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ ΠΈ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ³ΡΠ°ΡΠΈΠΈ. ΠΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ Π»ΠΈΡΡ ΠΆΠΈΠ·Π½Π΅Π½Π½Π°Ρ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΡΠΎΡΠ½ΠΎΠΉ ΠΌΠ΅Π΄ΠΈΡΠΈΠ½ΡΠΊΠΎΠΉ ΠΏΠΎΠΌΠΎΡΠΈ, ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ, ΡΡΠΎ ΠΏΠΎΠ»ΡΠ·Π° ΠΎΡ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π΄Π»Ρ ΠΌΠ°ΡΠ΅ΡΠΈ Π±ΡΠ΄Π΅Ρ Π½ΠΈΠΆΠ΅ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠΎΠ³ΠΎ ΡΠΈΡΠΊΠ° Π΄Π»Ρ ΠΏΠ»ΠΎΠ΄Π°. ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΎΠ±ΡΡΠ΄ΠΈΡΡ Ρ Π²ΡΠ°ΡΠΎΠΌ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΡ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΡΡ ΡΠ½ΠΈΠ·ΠΈΡΡ ΡΠΈΡΠΊ Π½Π΅Π³Π°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠΈΠΌΠΈ Π»ΡΡΠ°ΠΌΠΈ.
ΠΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ Π² ΡΡΠ΅ΡΡΠ΅ΠΌ ΠΈΠ»ΠΈ Π²ΡΠΎΡΠΎΠΌ ΡΡΠΈΠΌΠ΅ΡΡΡΠ΅ Π΄Π°Π΅Ρ ΠΌΠ΅Π½ΡΡΡΡ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΉ Ρ ΠΏΠ»ΠΎΠ΄Π°. ΠΠ»Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΊΠΎΠ½ΡΡΠ½ΠΎ-Π»ΡΡΠ΅Π²ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π»Π΅ΡΠ°ΡΠ΅Π³ΠΎ Π΄ΠΎΠΊΡΠΎΡΠ°, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠΌΠΎΠΆΠ΅Ρ Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΠΎ ΠΎΡΠ΅Π½ΠΈΡΡ Π²ΡΠ΅ ΡΠΈΡΠΊΠΈ Π΄Π»Ρ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ° ΠΎΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ.
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄Π΅ΡΠ΅ΠΉ
ΠΡΠ²Π°ΡΡ ΡΠ»ΡΡΠ°ΠΈ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π΄Π΅ΡΡΠΌ ΠΌΠ»Π°Π΄ΡΠ΅Π³ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ°. ΠΠΎΠ½Π΅ΡΠ½ΠΎ, Π΄Π΅ΡΡΠΊΠΈΠΉ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌ Π±ΠΎΠ»Π΅Π΅ ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»Π΅Π½ ΠΊ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΈ, Π½ΠΎ ΠΏΡΠΈ Π½Π°Π»ΠΈΡΠΈΠΈ ΡΠ΅ΡΡΠ΅Π·Π½ΡΡ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΠΉ ΠΎΡ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ Π½Π΅ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΎΡΠΊΠ°Π·ΡΠ²Π°ΡΡΡΡ. ΠΡΠ»ΠΈ ΠΆΠ΅ Ρ ΡΠ΅Π±Π΅Π½ΠΊΠ° Π½Π΅Ρ Π½Π°Π»ΠΈΡΠΈΡ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΡ ΠΊ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ, ΡΠΎ Π΄Π°Π½Π½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡΡΡ Π΄Π°ΠΆΠ΅ Π΄Π»Ρ ΠΌΠ°Π»ΡΡΠ΅ΠΉ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ Π³ΠΎΠ΄Π° ΠΆΠΈΠ·Π½ΠΈ.
Π ΡΠ°ΠΊΠΈΠΌ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΡΠΌ ΠΎΡΠ½ΠΎΡΡΡΡΡ:
- ΡΠΎΠ΄ΠΎΠ²Π°Ρ ΡΡΠ°Π²ΠΌΠ°;
- Π²ΡΠΎΠΆΠ΄Π΅Π½Π½ΡΠ΅ Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ;
- Π°Π»Π»Π΅ΡΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ΅Π°ΠΊΡΠΈΠΈ Π½Π° ΠΏΡΠ΅ΠΏΠ°ΡΠ°ΡΡ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΠ΅ Π΄Π»Ρ Π΄Π°ΡΠΈ Π½Π°ΡΠΊΠΎΠ·Π°;
- ΠΏΠΎΡΠΎΠΊ ΡΠ΅ΡΠ΄ΡΠ°.
ΠΠ΅ΡΠΈ ΡΡΠ°ΡΡΠ΅Π³ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ° Π΄ΠΎΠ²ΠΎΠ»ΡΠ½ΠΎ Π»Π΅Π³ΠΊΠΎ ΠΏΠ΅ΡΠ΅Π½ΠΎΡΡΡ Π΄Π°Π½Π½ΠΎΠ΅ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅
ΠΠ΅ΡΠ΅Π΄ ΡΠ΅ΠΌ ΠΊΠ°ΠΊ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄Π΅ΡΡΠΌ, ΠΈΡ Π½Π΅ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΊΠΎΡΠΌΠΈΡΡ Π½Π° ΠΏΡΠΎΡΡΠΆΠ΅Π½ΠΈΠΈ 2,5 ΡΠ°ΡΠΎΠ² Π΄ΠΎ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠΎΠΉ ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ, ΠΈΠ½Π°ΡΠ΅ ΠΌΠΎΠΆΠ΅Ρ ΡΡΠΎΡΠΌΠΈΡΠΎΠ²Π°ΡΡΡΡ Π°ΡΠΏΠΈΡΠ°ΡΠΈΠΎΠ½Π½Π°Ρ ΠΏΠ½Π΅Π²ΠΌΠΎΠ½ΠΈΡ. ΠΠΎΠ³Π΄Π° ΠΆΠ΅ Π½Π° ΠΌΠΎΠΌΠ΅Π½Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅Π±Π΅Π½ΠΊΡ ΡΠΆΠ΅ ΠΈΡΠΏΠΎΠ»Π½ΠΈΠ»ΠΎΡΡ 4 Π³ΠΎΠ΄Π°, ΡΠΎ ΡΠ»Π΅Π΄ΡΠ΅Ρ Ρ Π½ΠΈΠΌ ΠΏΠΎΠ³ΠΎΠ²ΠΎΡΠΈΡΡ. ΠΡΠΈ ΡΡΠΎΠΌ ΠΏΠΎΡΡΠ°ΡΠ°ΡΡΡΡ ΠΎΠ±ΡΡΡΠ½ΠΈΡΡ Ρ ΠΎΠ΄ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ, ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎ Π°ΠΊΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°ΡΡ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΡΡΠΎ ΠΌΠ°ΠΌΠ° ΠΈ ΠΏΠ°ΠΏΠ° Π±ΡΠ΄ΡΡ Π²ΡΠ΅ Π²ΡΠ΅ΠΌΡ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡΡ ΡΡΠ΄ΠΎΠΌ.
ΠΠ΅ΡΠΊΠ°ΠΌ Π±ΠΎΠ»Π΅Π΅ ΠΌΠ»Π°Π΄ΡΠ΅Π³ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΏΠΎΠ΄ Π½Π°ΡΠΊΠΎΠ·ΠΎΠΌ. ΠΡΠΈΡΠ΅ΠΌ Π²ΠΎ Π²ΡΠ΅ΠΌΡ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ ΡΠΎΠ΄ΠΈΡΠ΅Π»ΠΈ ΠΌΠΎΠ³ΡΡ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡΡ Π²ΠΌΠ΅ΡΡΠ΅ Ρ ΠΊΡΠΎΡ ΠΎΠΉ ΠΈ Ρ Π½Π°Π΄Π΅ΡΡΠΌΠΈ Π½Π° ΡΠ΅Π±Ρ Π΄Π»Ρ Π·Π°ΡΠΈΡΡ ΡΠ²ΠΈΠ½ΡΠΎΠ²ΡΠΌΠΈ ΡΠ°ΡΡΡΠΊΠ°ΠΌΠΈ.
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ
Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ½ΡΡΡ, ΠΊΠ°ΠΊ Π΄Π΅Π»Π°ΡΡ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΡΡ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ, ΡΡΠΎΠΈΡ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅ΡΡ ΠΏΠΎΡΡΠ°ΠΏΠ½ΠΎΠ΅ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΠ°:
- Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ ΠΏΠ΅ΡΠ΅Π΄ ΠΏΡΠΎΡΠ΅Π΄ΡΡΠΎΠΉ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡ ΠΏΠΎΠΏΡΠΎΡΠΈΡ ΡΠ½ΡΡΡ Π²ΡΠ΅ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΊΡΠ°ΡΠ΅Π½ΠΈΡ, ΡΡΠΎΠ±Ρ ΠΈΠ·Π±Π΅ΠΆΠ°ΡΡ ΡΠ±ΠΎΠ΅Π² Π² ΡΠ°Π±ΠΎΡΠ΅ ΠΎΠ±ΠΎΡΡΠ΄ΠΎΠ²Π°Π½ΠΈΡ,
- Π΄Π°Π»Π΅Π΅ ΠΏΠ°ΡΠΈΠ΅Π½Ρ Π½Π°Π΄Π΅Π²Π°Π΅Ρ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠΉ Π·Π°ΡΠΈΡΠ½ΡΠΉ ΠΆΠΈΠ»Π΅Ρ, ΡΡΠΎΠ±Ρ ΡΠ½ΠΈΠ·ΠΈΡΡ ΡΡΠ΅ΠΏΠ΅Π½Ρ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ° Π² ΡΠ΅Π»ΠΎΠΌ,
- ΠΏΠ°ΡΠΈΠ΅Π½Ρ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ ΠΈΠ»ΠΈ ΠΏΡΠΈΡΠ°ΠΆΠΈΠ²Π°Π΅ΡΡΡ ΡΠΏΠΈΠ½ΠΎΠΉ ΠΊ Π°ΠΏΠΏΠ°ΡΠ°ΡΡ, Π° Π΅Π³ΠΎ ΠΏΠΎΠ΄Π±ΠΎΡΠΎΠ΄ΠΎΠΊ ΡΠΈΠΊΡΠΈΡΡΠ΅ΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΊΠΈ β ΡΡΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ, ΡΡΠΎΠ±Ρ ΠΈΡΠΊΠ»ΡΡΠΈΡΡ Π»ΠΈΡΠ½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΠΈ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ ΡΠΎΡΠ½ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅,
- ΠΏΠΎΡΠ»Π΅ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ° Π²ΠΎΠΊΡΡΠ³ Π³ΠΎΠ»ΠΎΠ²Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° Π½Π°ΡΠΈΠ½Π°Π΅Ρ Π²ΡΠ°ΡΠ°ΡΡΡΡ ΡΠΊΠ°Π½Π΅Ρ Ρ ΠΈΠ·Π»ΡΡΠ°ΡΡΠ΅ΠΉ ΡΡΡΠ±ΠΊΠΎΠΉ β ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½ ΠΏΠ΅ΡΠ΅Π΄Π°Π΅Ρ ΡΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π½Π° ΠΊΠΎΠΌΠΏΡΡΡΠ΅Ρ.
ΠΠ° ΡΠΎΡΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΎ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ
ΠΡΠΎΡΠ΅Π΄ΡΡΠ° Π΄Π»ΠΈΡΡΡ ΠΌΠ΅Π½ΡΡΠ΅ ΠΌΠΈΠ½ΡΡΡ. ΠΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ° ΡΠΎΠ²Π΅ΡΡΠ΅Π½Π½ΠΎ Π±Π΅Π·Π±ΠΎΠ»Π΅Π·Π½Π΅Π½Π½Π°Ρ, Π½Π΅ ΡΡΠ΅Π±ΡΠ΅Ρ ΠΎΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ ΡΠ΅ΡΡΠ΅Π·Π½ΠΎΠΉ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ.
ΠΠ°ΠΊ ΡΠ°ΡΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ²ΡΠΎΡΡΡΡ ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ
ΠΠ½ΠΎΠ³ΠΈΡ Π²ΠΎΠ»Π½ΡΠ΅Ρ Π²ΠΎΠΏΡΠΎΡ ΠΎ ΡΠΎΠΌ, Π²ΡΠ΅Π΄Π½ΠΎ Π»ΠΈ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡΡ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ ΠΈ ΠΊΠ°ΠΊ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΠ΅ ΠΎΡΡΠ°ΠΆΠ°Π΅ΡΡΡ Π½Π° Π·Π΄ΠΎΡΠΎΠ²ΡΠ΅ ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ° Π² ΡΠ΅Π»ΠΎΠΌ. ΠΠΎΠ»Π½ΠΎΠ²Π°ΡΡΡΡ ΠΏΠΎ ΡΡΠΎΠΌΡ ΠΏΠΎΠ²ΠΎΠ΄Ρ Π½Π΅ ΡΡΠΎΠΈΡ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π΄ΠΎΠ·Π° ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ½ΡΡΠ½ΠΎ-Π»ΡΡΠ΅Π²ΠΎΠ³ΠΎ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠ° ΠΎΡΠ΅Π½Ρ ΠΌΠ°Π»Π° ΠΈ Π½Π΅ Π½Π΅ΡΠ΅Ρ Π½ΠΈΠΊΠ°ΠΊΠΎΠΉ ΠΎΠΏΠ°ΡΠ½ΠΎΡΡΠΈ Π΄Π»Ρ Π·Π΄ΠΎΡΠΎΠ²ΡΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°. ΠΡΠΎΡ ΠΎΠ΄ΠΈΡΡ ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ ΡΠ°Π·ΡΠ΅ΡΠ°Π΅ΡΡΡ Π΄ΠΎ 12-14 ΡΠ°Π· Π² Π³ΠΎΠ΄1.
Π’Π°ΠΊ, Π΅ΡΠ»ΠΈ ΡΡΠ°Π²Π½ΠΈΡΡ Ρ ΠΏΡΠΎΡΠΈΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ°ΠΌΠΈ ΡΠ΅Π½ΡΠ³Π΅Π½-Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ, ΡΠΎ ΠΎΠ΄Π½Π° ΡΠΏΠΈΡΠ°Π»ΡΠ½Π°Ρ ΠΠ’ ΡΠ΅ΡΠ΅ΠΏΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ 2000 ΠΏΡΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΡΠ½ΠΈΠΌΠΊΠ°ΠΌ. ΠΠ±Π»ΡΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈ ΠΏΡΠΎΡ ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΡΠ»ΡΠΎΡΠΎΠ³ΡΠ°ΡΠΈΠΈ Π² 2-3 ΡΠ°Π·Π° Π²ΡΡΠ΅, ΡΠ΅ΠΌ ΠΏΡΠΈ ΠΠ’ ΠΎΠ±Π΅ΠΈΡ ΡΠ΅Π»ΡΡΡΠ΅ΠΉ. ΠΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ Π΄ΠΎΠΏΡΡΡΠΈΠΌΠ°Ρ Π»ΡΡΠ΅Π²Π°Ρ Π½Π°Π³ΡΡΠ·ΠΊΠ° Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π³ΠΎΠ΄Π° Π΄Π»Ρ Π²Π·ΡΠΎΡΠ»ΠΎΠ³ΠΎ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠ° ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 1000 ΠΌΠΊΠΠ², Π° Π΄Π»Ρ Π΄Π΅ΡΠ΅ΠΉ Π² Π²ΠΎΠ·ΡΠ°ΡΡΠ΅ Π΄ΠΎ 15 Π»Π΅Ρ β 300-400 ΠΌΠΊΠΠ². ΠΠΎ Π²ΡΠ΅ΠΌΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ ΠΎΠ±Π΅ΠΈΡ ΡΠ΅Π»ΡΡΡΠ΅ΠΉ Π½Π°Π³ΡΡΠ·ΠΊΠ° ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ Π²ΡΠ΅Π³ΠΎ 70 ΠΌΠΊΠ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΏΠΎΠ²ΡΠΎΡΡΡΡ ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎ 14 ΡΠ°Π· Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π³ΠΎΠ΄Π°.
ΠΡΡΠΎΡΠ½ΠΈΠΊΠΈ:
- https://iDiagnost.ru/kt/podgotovka-i-provedenie-3d-snimkov-zubov
- https://Center-Luch.ru/stati/3d-snimok-zubov/
- https://zub.clinic/protezy/3dkt
- https://dental-clinic.expert/3d-kompyuternaya-tomografiya-zubov/
- https://simpladent.com/publication/dlya_pacientov/3d-snimok-zubov/
- https://mrtdom.ru/diagnostika-kt/kt-golovy/klkt-v-stomatologii
- https://apkhleb.ru/kt/konusno-luchevaya-kompyuternaya-tomografiya
- https://DentConsult.ru/lechenie-zubov/kompyuternaya-tomografiya-zubov-i-chelyu.html
ΠΠΊΠ°ΡΠ΅ΡΠΈΠ½Π° ΠΠ΅Π»ΠΈΠΊΠΎΠ²Π°
ΠΡΠ°Ρ-ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³-ΡΠ΅ΡΠ°ΠΏΠ΅Π²Ρ. ΠΠ°ΡΠΎΠ΄ΠΎΠ½ΡΠΎΠ»ΠΎΠ³. ΠΡΠ°Ρ Π²ΡΡΡΠ΅ΠΉ ΠΊΠ°ΡΠ΅Π³ΠΎΡ. Π‘ΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ ΠΊΠ»Π°ΡΡΠ°. Π‘ΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΡΠ΅ΡΡΡ Π½Π° Π»Π΅ΡΠ΅Π½ΠΈΠΈ ΠΊΠ°ΡΠΈΠΎΠ·Π½ΡΡ ΠΈ Π½Π΅ ΠΊΠ°ΡΠΈΠΎΠ·Π½ΡΡ ΠΏΠΎΡΠ°ΠΆΠ΅Π½ΠΈΠΉ Π·ΡΠ±ΠΎΠ².
Π¨ΠΎΡΡΠ΅ Π Π΅Π²ΠΎΠ»ΡΡΠΈΠΈ, 18ΠΊ2 ΠΠ΄ΡΠ΅Ρ: ΠΡΠ°ΡΠ½ΠΎΠ³Π²Π°ΡΠ΄Π΅ΠΉΡΠΊΠΈΠΉ ΡΠ°ΠΉΠΎΠ½, 195176, Π‘Π°Π½ΠΊΡ-ΠΠ΅ΡΠ΅ΡΠ±ΡΡΠ³, ΡΠΎΡΡΠ΅ Π Π΅Π²ΠΎΠ»ΡΡΠΈΠΈ, Π΄ΠΎΠΌ 18, ΠΊΠΎΡΠΏΡΡ 2 | |
Π£Π»ΠΈΡΠ° ΠΠΏΡΠΈΠΊΠΎΠ², 45ΠΊ1 ΠΠ΄ΡΠ΅Ρ: ΠΡΠΈΠΌΠΎΡΡΠΊΠΈΠΉ ΡΠ°ΠΉΠΎΠ½, 197082, Π‘Π°Π½ΠΊΡ-ΠΠ΅ΡΠ΅ΡΠ±ΡΡΠ³, ΡΠ»ΠΈΡΠ° ΠΠΏΡΠΈΠΊΠΎΠ², Π΄ΠΎΠΌ 45, ΠΊΠΎΡΠΏΡΡ 1 | |
Π€ΡΠΎΠ½ΡΠΎΠ²Π°Ρ ΡΠ»ΠΈΡΠ°, 3Π£ ΠΠ΄ΡΠ΅Ρ: ΠΠ΅ΡΡΠΎΠ΄Π²ΠΎΡΡΠΎΠ²ΡΠΉ ΡΠ°ΠΉΠΎΠ½, 198515, Π‘Π°Π½ΠΊΡ-ΠΠ΅ΡΠ΅ΡΠ±ΡΡΠ³, ΠΏΠΎΡΠ΅Π»ΠΎΠΊ Π‘ΡΡΠ΅Π»ΡΠ½Π°, Π€ΡΠΎΠ½ΡΠΎΠ²Π°Ρ ΡΠ»ΠΈΡΠ°, Π΄ΠΎΠΌ 3Π£ | |
Π ΠΎΡΡΠΎΠ²ΡΠΊΠ°Ρ ΡΠ»ΠΈΡΠ°, 13-15 ΠΠ΄ΡΠ΅Ρ: ΠΡΡΠΊΠΈΠ½ΡΠΊΠΈΠΉ ΡΠ°ΠΉΠΎΠ½, 196634, Π‘Π°Π½ΠΊΡ-ΠΠ΅ΡΠ΅ΡΠ±ΡΡΠ³, ΠΏΠΎΡΠ΅Π»ΠΎΠΊ Π¨ΡΡΠ°ΡΡ, ΠΌΠΈΠΊΡ. Π‘Π»Π°Π²ΡΠ½ΠΊΠ°, Π ΠΎΡΡΠΎΠ²ΡΠΊΠ°Ρ ΡΠ»ΠΈΡΠ°, Π΄ΠΎΠΌ 13-15 | |
Π£Π»ΠΈΡΠ° ΠΡΠ°ΡΡΠ΅Π²Π°, 7ΠΊ1 ΠΠ΄ΡΠ΅Ρ: ΠΡΠ±ΠΎΡΠ³ΡΠΊΠΈΠΉ ΡΠ°ΠΉΠΎΠ½, 194356, Π‘Π°Π½ΠΊΡ-ΠΠ΅ΡΠ΅ΡΠ±ΡΡΠ³, ΡΠ»ΠΈΡΠ° ΠΡΠ°ΡΡΠ΅Π²Π°, Π΄ΠΎΠΌ 7, ΠΊΠΎΡΠΏΡΡ 1 | Π¦Π΅Π½ΡΡΠ°Π»ΡΠ½Π°Ρ ΡΠ»ΠΈΡΠ°, 54ΠΊ2 ΠΠ΄ΡΠ΅Ρ: ΠΡΠ΅Π²ΠΎΠ»ΠΎΠΆΡΠΊΠΈΠΉ ΡΠ°ΠΉΠΎΠ½, 188691, ΠΠ΅Π½ΠΈΠ½Π³ΡΠ°Π΄ΡΠΊΠ°Ρ ΠΎΠ±Π»Π°ΡΡΡ, Π³ΠΎΡΠΎΠ΄ ΠΡΠ΄ΡΠΎΠ²ΠΎ, ΡΠ»ΠΈΡΠ° Π¦Π΅Π½ΡΡΠ°Π»ΡΠ½Π°Ρ, Π΄ΠΎΠΌ 54, ΠΊΠΎΡΠΏΡΡ 2 |
ΠΡΠ΅Π²ΠΎΠ»ΠΎΠΆΡΠΊΠΈΠΉ ΠΏΡΠΎΡΠΏΠ΅ΠΊΡ, 68 ΠΠ΄ΡΠ΅Ρ: ΠΡΠ΅Π²ΠΎΠ»ΠΎΠΆΡΠΊΠΈΠΉ ΡΠ°ΠΉΠΎΠ½, 188640, ΠΠ΅Π½ΠΈΠ½Π³ΡΠ°Π΄ΡΠΊΠ°Ρ ΠΎΠ±Π»Π°ΡΡΡ, Π³ΠΎΡΠΎΠ΄ ΠΡΠ΅Π²ΠΎΠ»ΠΎΠΆΡΠΊ, ΠΡΠ΅Π²ΠΎΠ»ΠΎΠΆΡΠΊΠΈΠΉ ΠΏΡΠΎΡΠΏΠ΅ΠΊΡ, Π΄ΠΎΠΌ 68, ΠΊΠΎΡΠΏΡΡ 1 | |
ΠΡΠΎΡΠΏΠ΅ΠΊΡ ΠΠ΅Π½ΠΈΠ½Π°, 53 ΠΠ΄ΡΠ΅Ρ: ΠΠΎΠ»ΠΏΠΈΠ½ΡΠΊΠΈΠΉ ΡΠ°ΠΉΠΎΠ½, 196650, Π‘Π°Π½ΠΊΡ-ΠΠ΅ΡΠ΅ΡΠ±ΡΡΠ³, Π³ΠΎΡΠΎΠ΄ ΠΠΎΠ»ΠΏΠΈΠ½ΠΎ, ΠΏΡΠΎΡΠΏΠ΅ΠΊΡ ΠΠ΅Π½ΠΈΠ½Π°, Π΄ΠΎΠΌ 53 | ΠΡΠΎΡΠΏΠ΅ΠΊΡ ΠΠ΅Π½ΠΈΠ½Π°, 59 ΠΠ΄ΡΠ΅Ρ: ΠΡΠ°ΡΠ½ΠΎΡΠ΅Π»ΡΡΠΊΠΈΠΉ ΡΠ°ΠΉΠΎΠ½, 198320, Π‘Π°Π½ΠΊΡ-ΠΠ΅ΡΠ΅ΡΠ±ΡΡΠ³, Π³ΠΎΡΠΎΠ΄ ΠΡΠ°ΡΠ½ΠΎΠ΅ Π‘Π΅Π»ΠΎ, ΠΏΡΠΎΡΠΏΠ΅ΠΊΡ ΠΠ΅Π½ΠΈΠ½Π°, Π΄ΠΎΠΌ 59 |
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ Π·ΡΠ±ΠΎΠ²
Π’ΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ β ΡΡΠΎ ΠΌΠ΅ΡΠΎΠ΄ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ Π²ΡΠ°Ρ ΠΌΠΎΠΆΠ΅Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΏΠΎΡΠ»ΠΎΠΉΠ½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΎΠ³ΠΎ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠ³ΠΎ ΠΎΡΠ³Π°Π½Π°. ΠΡΠΎΠ²ΠΎΠ΄ΠΈΡΡΡ ΡΡΠΎ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ° β ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠ°. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΡΡΡ Π½Π° ΠΊΠΎΠΌΠΏΡΡΡΠ΅Ρ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΠ±ΡΠ°Π±Π°ΡΡΠ²Π°Π΅Ρ ΠΈΡ ΠΈ Π²ΡΠ΄Π°Π΅Ρ Π½Π° ΡΠΊΡΠ°Π½ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅. ΠΠ°ΠΊΠΈΠ΅ Π²ΠΈΠ΄Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ Π·ΡΠ±ΠΎΠ² ΡΡΡΠ΅ΡΡΠ²ΡΡΡ:
- Π‘Π°ΠΌΡΠΉ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ β ΡΡΠΎ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½Π°Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ. ΠΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈ ΡΡΠΎΠΌ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ Π΄Π²ΡΡ ΠΌΠ΅ΡΠ½ΡΠΌ ΠΈ ΠΏΠ»ΠΎΡΠΊΠΈΠΌ. ΠΠ³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΠΏΠ΅ΡΠ°ΡΠ°ΡΡ Π½Π° ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π±ΡΠΌΠ°Π³Π΅.
- ΠΠΎΠ»Π΅Π΅ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° β ΡΡΠΎ 3Π-ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ. Π‘ Π΅Π΅ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΡΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·ΡΡΠ°ΡΡ ΡΠΎΠ»ΡΠΊΠΎ Π½Π° ΡΠΊΡΠ°Π½Π΅ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ°.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ 3D-ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ
3Π-ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠ΅ΠΉ Π² ΠΌΠ΅Π΄ΠΈΡΠΈΠ½Π΅ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ°ΠΊΠΎΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΡΠ΅Π½ΠΈΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΎΡΠ³Π°Π½Π° ΡΠΎ Π²ΡΠ΅Ρ ΡΡΠΎΡΠΎΠ½ β Π² ΡΡΠ΅Ρ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΡ . ΠΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΡΡΠΎΡ ΡΠΏΠΎΡΠΎΠ± ΠΈ Π² ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ β ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½Π°Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ Π·ΡΠ±ΠΎΠ².
ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ ΡΡΠΎΠΌΡ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΡΠΎΡΠΎΠ²ΠΎΠΉ ΠΏΠΎΠ»ΠΎΡΡΠΈ, ΡΠ΅Π»ΡΡΡΠ΅ΠΉ ΠΈ Π·ΡΠ±ΠΎΠ² Π² ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎΡΡΠΈ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π½ΠΎΡΠ΅Π½Π½ΠΎ. 3D-ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ Π·ΡΠ±ΠΎΠ² ΡΠ²Π»ΡΠ΅ΡΡΡ Π±ΠΎΠ»Π΅Π΅ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌ ΠΈ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΡΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ, ΡΠ΅ΠΌ ΠΎΠ±ΡΡΠ½Π°Ρ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ³ΡΠ°ΡΠΈΡ. Π Π΅Π·ΡΠ»ΡΡΠ°Ρ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΉ ΠΏΡΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΎΡΡΠΎΠΏΠ°Π½ΡΠΎΠΌΠΎΠ³ΡΠ°ΠΌΠΌΠΎΠΉ, ΠΈΠ»ΠΈ ΠΊΠΎΠ½ΡΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΠΌΠΌΠΎΠΉ.
Π’Π΅Ρ Π½ΠΈΠΊΠ° ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ
ΠΡΠΎΠ²ΠΎΠ΄ΠΈΡΡΡ ΡΡΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ° β ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠ°. ΠΠ½ ΠΏΠΎΠ΄ΠΊΠ»ΡΡΠ΅Π½ ΠΊ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΡ, ΠΈ Π²ΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½Π°Ρ ΠΏΡΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΈ, ΠΏΠ΅ΡΠ΅Π½ΠΎΡΠΈΡΡΡ Π² Π½Π΅Π³ΠΎ. Π’Π°ΠΌ ΠΎΠ½Π° ΠΎΠ±ΡΠ°Π±Π°ΡΡΠ²Π°Π΅ΡΡΡ Π² ΡΠΈΡΡΠΎΠ²ΠΎΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ β ΠΎΠ±ΡΠ΅ΠΌΠ½ΡΡ ΡΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΡΡ ΠΌΠΎΠ΄Π΅Π»Ρ ΡΠΎΡΠΎΠ²ΠΎΠΉ ΠΏΠΎΠ»ΠΎΡΡΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°. ΠΠΏΠΏΠ°ΡΠ°Ρ Π΄Π»Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠΏΠΈΡΠ°Π»ΡΠ½ΡΠΌ ΠΈΠ»ΠΈ ΠΌΡΠ»ΡΡΠΈΡΠΏΠΈΡΠ°Π»ΡΠ½ΡΠΌ.
ΠΠ»Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ ΠΏΡΠ΅Π΄Π»Π°Π³Π°ΡΡ ΠΏΠΎΡΡΠ°Π²ΠΈΡΡ ΠΏΠΎΠ΄Π±ΠΎΡΠΎΠ΄ΠΎΠΊ Π½Π° ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΊΡ, Π° Π²ΠΎΠΊΡΡΠ³ Π΅Π³ΠΎ Π³ΠΎΠ»ΠΎΠ²Ρ Π±ΡΠ΄Π΅Ρ Π²ΡΠ°ΡΠ°ΡΡΡΡ ΠΎΡΠ½ΠΎΠ²Π½Π°Ρ ΡΠ°ΡΡΡ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ°
ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ ΡΠΎΠΌΡ, ΡΡΠΎ Π²ΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ Ρ ΡΠ°Π½ΠΈΡΡΡ Π² ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ΅, ΡΠΎΠΌΠΎΠ³ΡΠ°ΠΌΠΌΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅ΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ Π² Π»ΡΠ±ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ. Π’Π°ΠΊΠΆΠ΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΡΠ΅Π΄Π²Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠ΅Π½ΠΈΡΡ Ρ ΠΎΠ΄ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π²ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΡΡΠ²Π° β Π΅ΡΠ»ΠΈ ΠΎΠ½ΠΎ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ. Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ Π²ΡΠ΅ Ρ ΠΎΠ΄Ρ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ ΠΈ ΡΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°ΡΡ ΠΆΠ΅Π»Π°Π΅ΠΌΡΠΉ ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ. Π’Π°ΠΊΠΆΠ΅ ΡΡΠΎΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΊΠΎΠ½ΡΠΈΠ»ΠΈΡΠΌΠ°Ρ β Π² ΡΡΡΠ΄Π½ΡΡ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΈΡ Π²ΠΎΠΏΡΠΎΡΠ°Ρ .
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄Π»ΠΈΡΡΡ Π²ΡΠ΅Π³ΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ΅ΠΊΡΠ½Π΄, Π΄ΠΎΠ·Π° ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠΎΠ³ΠΎ ΠΎΠ±Π»ΡΡΠ΅Π½ΠΈΡ ΡΠ²Π΅Π΄Π΅Π½Π° ΠΊ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΡ β ΡΡΠΎ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²ΠΎ ΠΏΠ΅ΡΠ΅Π΄ ΠΎΠ±ΡΡΠ½ΡΠΌ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠΌ. ΠΠ°ΡΠΈΠ΅Π½ΡΡ ΠΏΡΠ΅Π΄Π»Π°Π³Π°ΡΡ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ ΠΏΠΎΠ΄Π±ΠΎΡΠΎΠ΄ΠΎΠΊ Π½Π° ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΊΡ, Π° Π»Π±ΠΎΠΌ ΠΏΡΠΈΠΆΠ°ΡΡΡΡ ΠΊ ΡΡΠΎΠΉΠΊΠ΅ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ°. ΠΠ΅ΠΆΠ΄Ρ Π·ΡΠ±ΠΎΠ² ΠΏΠΎΠΌΠ΅ΡΠ°Π΅ΡΡΡ ΠΏΠ»Π°ΡΡΠΈΠ½Π°. ΠΠΎ Π²ΡΠ΅ΠΌΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π²ΠΎΠΊΡΡΠ³ Π³ΠΎΠ»ΠΎΠ²Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° Π²ΡΠ°ΡΠ°Π΅ΡΡΡ ΡΠ°ΡΡΡ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ°, ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΡΡΠ°Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠ½ΠΈΠΌΠΊΠΎΠ². Π’Π°ΠΊΠΎΠ΅ Π±ΠΎΠ»ΡΡΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΎΠ΄Π½ΠΎΠΌΠΎΠΌΠ΅Π½ΡΠ½ΠΎ ΡΠ΄Π΅Π»Π°Π½Π½ΡΡ ΡΠ½ΠΈΠΌΠΊΠΎΠ² ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠΎΠ·Π΄Π°ΡΡ ΡΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅. ΠΠ° Π²ΡΠ΅ Π²ΡΠ΅ΠΌΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π°ΠΏΠΏΠ°ΡΠ°Ρ Π΄Π΅Π»Π°Π΅Ρ ΠΎΠΊΠΎΠ»ΠΎ 200 ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΉ.
ΠΠ° ΡΠ½ΠΈΠΌΠΊΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ²ΠΈΠ΄Π΅ΡΡ Π²ΡΠ΅ Π·ΡΠ±Ρ, ΡΠ΅Π»ΡΡΡΠΈ ΠΈ ΠΎΡΠ΅Π½ΠΈΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΏΠ°ΡΠΎΠ΄ΠΎΠ½ΡΠ°
ΠΡΠ»ΠΈ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π±ΠΎΠ»ΡΡΡΡ ΡΠ΅ΡΠΊΠΎΡΡΡ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΈΠ»ΠΈ ΠΏΡΠΈ ΠΏΠΎΠ΄ΠΎΠ·ΡΠ΅Π½ΠΈΠΈ Π½Π° Π½Π°Π»ΠΈΡΠΈΠ΅ ΠΏΠΎΠ»ΠΎΡΡΠ΅ΠΉ Π²Π½ΡΡΡΠΈ ΡΠ΅Π»ΡΡΡΠΈ, ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ½ΡΡΠ°ΡΡΠ°. ΠΡΠ΅ ΠΎΠ΄ΠΈΠ½ ΠΏΠ»ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΎΠ½ΠΎ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡΡΡ Π½Π΅ΠΎΠ΄Π½ΠΎΠΊΡΠ°ΡΠ½ΠΎ Π·Π° ΠΌΠ°Π»ΡΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΡΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡΠΈ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌ Π»Π΅ΡΠ΅Π½ΠΈΠΈ ΡΡΠΆΠ΅Π»ΡΡ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΎΠΏΡΡ ΠΎΠ»Π΅Π²ΡΡ .
ΠΠΎΠΊΠ°Π·Π°Π½ΠΈΡ
ΠΠ»Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ Π·ΡΠ±ΠΎΠ² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ ΡΡΠ΄ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΠΉ. Π₯ΠΎΡΡ ΡΡΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡΡΡ ΠΈ ΠΏΠΎ ΠΆΠ΅Π»Π°Π½ΠΈΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°, Π½Π° ΡΠ΅Π³ΠΎΠ΄Π½ΡΡΠ½ΠΈΠΉ Π΄Π΅Π½Ρ ΠΎΠ½ΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π΄ΠΎΡΠΎΠ³ΠΎΡΡΠΎΡΡΠΈΠΌ ΠΈ Π² Π³ΠΎΡΡΠ΄Π°ΡΡΡΠ²Π΅Π½Π½ΡΡ ΡΡΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠΎ ΡΡΡΠΎΠ³ΠΈΠΌ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΡΠΌ. Π§Π°ΡΡΠ½ΡΠ΅ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΈ ΠΌΠΎΠ³ΡΡ Π΄Π΅Π»Π°ΡΡ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ Π² Π»ΡΠ±ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ β ΡΠ°ΠΊ ΠΏΠΎΠ²ΡΡΠ°Π΅ΡΡΡ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅Π½Π½ΠΎΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ.
ΠΠ°ΠΊΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΡ ΡΡΡΠ΅ΡΡΠ²ΡΡΡ Π΄Π»Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ 3D-ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ?
- ΠΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΡ , ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Ρ ΠΏΡΠΈ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ°Ρ .
- ΠΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ° ΠΊ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠΌΡ Π²ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΡΡΠ²Ρ.
- ΠΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ° ΠΊ ΠΈΠΌΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ Π·ΡΠ±ΠΎΠ².
- ΠΠ΅ΡΡΠΊΠ°Ρ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡ β ΠΊΠΎΠ³Π΄Π° ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΠΈΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΈΠΊΡΡΠ°.
- ΠΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ° ΠΈ Π»Π΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π²ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΠΉ.
- ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΊΡΡΡΠΎΠ³ΠΎ ΠΊΠ°ΡΠΈΠ΅ΡΠ°.
- ΠΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ° Π·ΡΠ±ΠΎΠ² ΠΌΡΠ΄ΡΠΎΡΡΠΈ.
Π§ΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ²ΠΈΠ΄Π΅ΡΡ
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ Π΄Π΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±Π½Π°ΡΡΠΆΠΈΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅, Π΄Π°ΠΆΠ΅ ΡΠ°ΠΌΡΠ΅ ΠΌΠ΅Π»ΡΡΠ°ΠΉΡΠΈΠ΅ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ Π² ΡΠΎΡΠΎΠ²ΠΎΠΉ ΠΏΠΎΠ»ΠΎΡΡΠΈ. Π§ΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ²ΠΈΠ΄Π΅ΡΡ ΡΡΠΎΡ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄?
- ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΡΡΠ°Π²ΠΌΡ ΡΠ΅Π»ΡΡΡΠ΅ΠΉ ΠΈ Π·ΡΠ±ΠΎΠ²;
- Π΄Π΅ΡΠ΅ΠΊΡΡ Π² ΡΠ°Π·Π²ΠΈΡΠΈΠΈ Π·ΡΠ±ΠΎΠ², Π΄Π΅ΡΠ΅Π½ ΠΈ ΠΊΠΎΡΡΠ½ΠΎΠΉ ΠΎΡΠ½ΠΎΠ²Ρ ΡΠ΅Π»ΡΡΡΠΈ;
- ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡΠ΅Π½ΠΈΡΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π·ΡΠ±ΠΎΠ² ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΡΡΠ³ Π΄ΡΡΠ³Π° ΠΈ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈΡ Π² Π΄Π΅ΡΠ½Π΅Π²ΡΡ ΠΊΠ°ΡΠΌΠ°Π½Π°Ρ ;
- ΠΎΡΠ΅Π½ΠΈΠ²Π°Π΅ΡΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ Π½ΠΎΡΠΎΠ²ΡΡ ΠΏΠ°Π·ΡΡ ΠΈ Π²ΡΡΡΠΈΠ»Π°ΡΡΠ΅ΠΉ ΠΈΡ ΡΠ»ΠΈΠ·ΠΈΡΡΠΎΠΉ;
- ΠΎΡΠ°Π³ΠΈ Ρ ΡΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ Π² ΡΠ°ΠΌΠΈΡ Π·ΡΠ±Π°Ρ , ΠΌΡΠ³ΠΊΠΈΡ ΡΠΊΠ°Π½ΡΡ ΠΈ ΠΊΠΎΡΡΡΡ ΡΠ΅Π»ΡΡΡΠΈ.
Π’Π°ΠΊΠΆΠ΅ Π·ΡΠ±Π½Π°Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ Π² Π»Π΅ΡΠ΅Π±Π½ΡΡ ΠΌΠ΅ΡΠΎΠΏΡΠΈΡΡΠΈΡΡ :
- ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅ΠΌΠ° ΠΏΡΠ΅Π΄ΡΡΠΎΡΡΠ΅Π³ΠΎ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π²ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΡΡΠ²Π°;
- ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ° ΠΊ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ ΠΏΠΎ ΡΠ΄Π°Π»Π΅Π½ΠΈΡ Π·ΡΠ±ΠΎΠ² ΠΈΠ»ΠΈ ΠΈΡ ΠΏΡΠΎΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ;
- ΠΎΡΡΠ»Π΅ΠΆΠΈΠ²Π°Π½ΠΈΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Π² ΡΠΎΡΠΎΠ²ΠΎΠΉ ΠΏΠΎΠ»ΠΎΡΡΠΈ ΠΈΠ»ΠΈ Π² Π·ΡΠ±Π½ΠΎΠΉ ΡΠ΅Π»ΡΡΡΠΈ.
ΠΠ°ΠΊΠΈΠ΅ ΡΠ°Π·Π΄Π΅Π»Ρ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΡΡΠΈΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ?
- ΠΠ½Π΄ΠΎΠ΄ΠΎΠ½ΡΠΎΠ»ΠΎΠ³ΠΈΡ β ΠΎΡΠ΅Π½ΠΊΠ° ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π·ΡΠ±Π½ΠΎΠΉ ΠΏΠΎΠ»ΠΎΡΡΠΈ, ΠΊΠΎΡΠ½Π΅Π²ΡΡ ΠΊΠ°Π½Π°Π»ΠΎΠ², ΠΏΡΠ»ΡΠΏΡ Π·ΡΠ±Π°.
- Π₯ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΠ±Π»Π°ΡΡΡ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ β ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ° ΠΊ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠΌΡ Π²ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΡΡΠ²Ρ, ΠΎΡΠ΅Π½ΠΊΠ° ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π»Π΅ΡΠ΅Π½ΠΈΡ, ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ Π·Π°ΠΆΠΈΠ²Π»Π΅Π½ΠΈΡ.
- ΠΠ°ΡΠΎΠ΄ΠΎΠ½ΡΠΎΠ»ΠΎΠ³ΠΈΡ β Π·Π°Π½ΠΈΠΌΠ°Π΅ΡΡΡ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΎΠΉ ΠΈ Π»Π΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΏΠ°ΡΠΎΠ΄ΠΎΠ½ΡΠ° (ΡΠΊΠ»Π΅ΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ, ΠΎΠΏΡΡ ΠΎΠ»ΠΈ, ΠΎΡΡΠ΅ΠΎΠΏΠΎΡΠΎΠ·).
- ΠΡΡΠΎΠ΄ΠΎΠ½ΡΠΈΡ β Π·Π°Π½ΠΈΠΌΠ°Π΅ΡΡΡ ΠΎΡΠ΅Π½ΠΊΠΎΠΉ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π·ΡΠ±ΠΎΠ², ΠΊΠΎΡΡΠ½ΡΡ ΡΡΡΡΠΊΡΡΡ Π΄Π΅ΡΠ΅Π½, ΠΏΡΠΈΠΊΡΡΠΎΠΌ.
ΠΠΎΠΌΠΏΡΡΡΠ΅Ρ ΠΎΠ±ΡΠ°Π±Π°ΡΡΠ²Π°Π΅Ρ Π΄Π°Π½Π½ΡΠ΅ ΠΈ Π²ΡΠ²ΠΎΠ΄ΠΈΡ ΠΈΡ Π½Π° ΡΠΊΡΠ°Π½ Π² Π²ΠΈΠ΄Π΅ ΡΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ
ΠΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ° ΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΡ
ΠΠ΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΡΠΌ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΠ΅ΠΌ ΠΊ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΡΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π±Π΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΡΡΡ β Π½Π° Π»ΡΠ±ΠΎΠΌ ΡΡΠΎΠΊΠ΅. ΠΠΎΠ·ΡΠ°ΡΡΠ½ΡΡ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΠΉ Π΄Π»Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π½Π΅Ρ.
ΠΡΠ»ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΊΠΎΠ½ΡΡΠ°ΡΡ Π²ΠΎ Π²ΡΠ΅ΠΌΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ β Π΄ΠΎΠ±Π°Π²Π»ΡΠ΅ΡΡΡ Π΅ΡΠ΅ ΠΎΠ΄Π½ΠΎ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΠ΅. ΠΡΠΎ Π»ΡΠ΄ΠΈ Ρ ΡΡΠΆΠ΅Π»ΡΠΌΠΈ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡΠΌΠΈ ΠΌΠΎΡΠ΅Π²ΡΠ²ΠΎΠ΄ΡΡΠΈΡ ΠΏΡΡΠ΅ΠΉ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΊΠΎΠ½ΡΡΠ°ΡΡ Π²ΡΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΈΠ· ΠΎΡΠ³Π°Π½ΠΈΠ·ΠΌΠ° ΡΠ΅ΡΠ΅Π· ΠΏΠΎΡΠΊΠΈ.
ΠΠ΅ ΠΏΡΡΠΌΡΠΌ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΠ΅ΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΊΠ»Π°ΡΡΡΡΠΎΡΠΎΠ±ΠΈΡ β ΡΠ³ΡΠΎΠ·Ρ Π΄Π»Ρ ΠΆΠΈΠ·Π½ΠΈ ΡΠ°ΠΊΠΈΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π΅ Π½Π΅ΡΠ΅Ρ, Π½ΠΎ ΠΈΠΌ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ Π½Π΅ΠΊΠΎΠΌΡΠΎΡΡΠ½ΠΎ Π²ΠΎ Π²ΡΠ΅ΠΌΡ Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ°.
Π‘ΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ° ΠΊ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π½Π΅ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ. ΠΠ°ΡΠΈΠ΅Π½ΡΠ° Π»ΠΈΡΡ ΠΏΡΠΎΡΡΡ ΠΏΠ΅ΡΠ΅Π΄ ΠΏΡΠΎΡΠ΅Π΄ΡΡΠΎΠΉ ΡΠ½ΡΡΡ Π²ΡΠ΅ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΡΠ΅Π΄ΠΌΠ΅ΡΡ. ΠΠ»Ρ Π·Π°ΡΠΈΡΡ ΠΎΡ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Π½Π°Π΄Π΅Π²Π°Π΅ΡΡΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΠΉ ΠΆΠΈΠ»Π΅Ρ ΡΠΎ ΡΠ²ΠΈΠ½ΡΠΎΠ²ΠΎΠΉ ΠΏΡΠΎΡΠ»ΠΎΠΉΠΊΠΎΠΉ.
Π‘Π΄Π΅Π»Π°ΡΡ ΡΠΎΠΌΠΎΠ³ΡΠ°ΠΌΠΌΡ Π·ΡΠ±ΠΎΠ² Π² ΡΡΠ΅Ρ
ΠΌΠ΅ΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ΅ΠΊΡΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π² ΡΠ°ΡΡΠ½ΡΡ
ΠΊΠ»ΠΈΠ½ΠΈΠΊΠ°Ρ
ΠΈΠ»ΠΈ Π² Π³ΠΎΡΡΠ΄Π°ΡΡΡΠ²Π΅Π½Π½ΡΡ
ΡΡΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡΡ
ΠΏΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΡΠΌ.
ΠΠ’ Π·ΡΠ±ΠΎΠ² β ΡΡΠΎ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠΎΡΠ½ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ ΡΠΊΠ°Π½ΠΈ ΠΏΠΎΠ»ΠΎΡΡΠΈ ΡΡΠ°. Π ΡΡΡΠ½ΠΎΡΡΠΈ, ΠΎΠ½ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΡΡΠΎΠ²Π΅ΡΡΠ΅Π½ΡΡΠ²ΠΎΠ²Π°Π½Π½ΡΠΉ ΡΠ΅Π½ΡΠ³Π΅Π½, ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ±ΡΡΠ½Π°Ρ ΠΎΡΡΠΎΠΏΠ°Π½ΡΠΎΠΌΠΎΠ³ΡΠ°ΠΌΠΌΠ° Π΄Π°Π΅Ρ Π΄Π²ΡΡ ΠΌΠ΅ΡΠ½ΡΠΉ, Β«ΠΏΠ»ΠΎΡΠΊΠΈΠΉΒ» ΡΠ½ΠΈΠΌΠΎΠΊ, Π° ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½Π°Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΡΠΎΡΠ½ΠΎΠ΅ ΡΡΠ΅Ρ ΠΌΠ΅ΡΠ½ΠΎΠ΅ ΡΠΈΡΡΠΎΠ²ΠΎΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅.
ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΠΈ Π·ΡΠ±ΠΎΠ² Π²ΡΠ°Ρ-ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ ΠΏΠΎΠ»ΡΡΠ°Π΅Ρ ΠΈΡΡΠ΅ΡΠΏΡΠ²Π°ΡΡΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΎ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ Π·ΡΠ±ΠΎΡΠ΅Π»ΡΡΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°. Π ΡΠ²ΡΠ·ΠΈ Ρ ΡΡΠΈΠΌ ΠΎΠ½Π° ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΠΎΡΠ΅Π½Ρ ΡΠΈΡΠΎΠΊΠΎ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° Π·Π°Π΄Π°Ρ:
- ΠΎΡΠ΅Π½ΠΊΠΈ ΡΡΡΡΠΊΡΡΡΡ, ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠ΅ΠΉ ΡΡΡΠΎΠ΅Π½ΠΈΡ, ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΈ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ ΡΠΊΠ°Π½Π΅ΠΉ;
- ΡΠΎΡΠ½ΠΎΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ ΠΏΡΠΈΡΠΈΠ½Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ ΡΠΈΠΌΠΏΡΠΎΠΌΠΎΠ²;
- ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΏΡΠΈΠ½ΡΡΡΡ ΠΌΠ΅Ρ ΠΈΠ»ΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ Π»Π΅ΡΠ΅Π½ΠΈΡ.
ΠΡΠΎ Π΄Π΅Π»Π°Π΅Ρ ΠΌΠ΅ΡΠΎΠ΄ Π²ΠΎΡΡΡΠ΅Π±ΠΎΠ²Π°Π½Π½ΡΠΌ Π² ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ, Ρ ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ, ΠΈΠΌΠΏΠ»Π°Π½ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΈ ΠΏΠ°ΡΠΎΠ΄ΠΎΠ½ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ. ΠΡΠΈ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ΅ΡΠ°ΠΏΠ΅Π²ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π»Π΅ΡΠ΅Π½ΠΈΡ ΡΠΎΠΌΠΎΠ³ΡΠ°ΠΌΠΌΠ° Π΄Π°Π΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΎΡΠ΅Π½ΠΈΡΡ ΠΎΠ΄Π½ΠΎΡΠΎΠ΄Π½ΠΎΡΡΡ ΠΏΠ»ΠΎΠΌΠ±ΠΈΡΠΎΠ²ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°, ΡΠ²ΠΈΠ΄Π΅ΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΈ ΡΡΡΡΠΊΡΡΡΡ ΠΊΠΎΡΠ½Π΅Π²ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, ΠΊΠ°Π½Π°Π»ΠΎΠ². Π₯ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠΎΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡ ΠΈ ΠΈΠΌΠΏΠ»Π°Π½ΡΠΎΠ»ΠΎΠ³ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅Ρ ΠΠ’ Π΄Π»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΊΠΎΡΡΠ½ΠΎΠΉ ΡΠΊΠ°Π½ΠΈ, Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ Π΅Π΅ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ.
ΠΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½Π°Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ Π·ΡΠ±ΠΎΠ² ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠΎΡΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΎΡΠ°Π³ΠΈ Π²ΠΎΡΠΏΠ°Π»Π΅Π½ΠΈΡ, ΠΎΠ±Π½Π°ΡΡΠΆΠΈΡΡ ΠΏΠ΅ΡΠ΅Π³ΠΎΡΠΎΠ΄ΠΊΠΈ ΠΈ ΠΈΠ½ΡΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ.
ΠΠΎΠΌΡ ΠΏΠΎΠΊΠ°Π·Π°Π½Π° ΠΈ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠΊΠ°Π·Π°Π½Π° ΠΠ’
ΠΠΎΠΊΠ°Π·Π°Π½ΠΈΡΠΌΠΈ ΠΊ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΠΎΠΌΠΎΠ³ΡΠ°ΠΌΠΌΡ Π²ΡΡΡΡΠΏΠ°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅:
- ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠ° ΠΊ ΠΈΠΌΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ ΠΈΠ»ΠΈ ΡΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΏΠ»Π°Π½Π° Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅Π΄ ΠΏΡΠΎΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ, ΡΠ»ΠΎΠΆΠ½ΡΠΌ Ρ ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΌ Π²ΠΌΠ΅ΡΠ°ΡΠ΅Π»ΡΡΡΠ²ΠΎΠΌ ΠΈΠ»ΠΈ ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½Π½ΡΠΌ ΡΠ΄Π°Π»Π΅Π½ΠΈΠ΅ΠΌ Π·ΡΠ±ΠΎΠ², ΠΎΡΡΠΎΠ΄ΠΎΠ½ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ Π»Π΅ΡΠ΅Π½ΠΈΠ΅ΠΌ;
- ΡΡΠ°Π²ΠΌΡ: ΡΡΠΈΠ±Ρ, ΠΏΠ΅ΡΠ΅Π»ΠΎΠΌΡ ΠΊΠΎΡΠ½Ρ ΠΈΠ»ΠΈ ΠΏΠΎΠ΄ΠΎΠ·ΡΠ΅Π½ΠΈΡ Π½Π° Π½ΠΈΡ , ΠΈΠ½ΡΠ΅ ΠΌΠ΅Ρ Π°Π½ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡ;
- Π΄Π΅ΡΠ΅ΠΊΡΡ, Π²ΡΠΎΠΆΠ΄Π΅Π½Π½ΡΠ΅ Π°Π½ΠΎΠΌΠ°Π»ΠΈΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠ΅Π»ΡΡΡΠ΅ΠΉ;
- Π½Π°ΡΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΈΠΊΡΡΠ°, Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ Π² ΡΠΎΡΠ½ΠΎΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π·Π°ΡΠ°ΡΠΊΠΎΠ² Π·ΡΠ±ΠΎΠ², ΠΎΡΠ΅Π½ΠΊΠ΅ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΈΡ ΠΏΡΠΎΡΠ΅Π·ΡΠ²Π°Π½ΠΈΡ ΠΈ ΠΏΡ.;
- Π±ΠΎΠ»Π΅Π·Π½ΠΈ Π΄Π΅ΡΠ΅Π½ ΠΈ ΡΠΊΠ°Π½Π΅ΠΉ ΠΏΠ°ΡΠΎΠ΄ΠΎΠ½ΡΠ°;
- ΠΏΠΎΠ΄ΠΎΠ·ΡΠ΅Π½ΠΈΠ΅ Π½Π° Π³Π»ΡΠ±ΠΎΠΊΠΈΠΉ ΠΊΠ°ΡΠΈΠ΅Ρ, ΠΏΡΠ»ΡΠΏΠΈΡ, ΠΏΠ°ΡΠΎΠ΄ΠΎΠ½ΡΠΈΡ, ΠΊΠΈΡΡΡ ΠΊΠΎΡΠ½Ρ Π·ΡΠ±Π° ΠΈ Ρ.Π΄.;
- ΡΠ½Π΄ΠΎΠ΄ΠΎΠ½ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π»Π΅ΡΠ΅Π½ΠΈΠ΅ β ΠΠ’ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠΏΠ»Π°Π½ΠΈΡΠΎΠ²Π°ΡΡ Π΅Π³ΠΎ ΠΈ Π²ΠΏΠΎΡΠ»Π΅Π΄ΡΡΠ²ΠΈΠΈ ΠΎΡΠ΅Π½ΠΈΡΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΈ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΡΡΡ ΠΏΠ»ΠΎΠΌΠ±ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΊΠ°Π½Π°Π»ΠΎΠ²;
- ΠΏΠΎΠ΄ΠΎΠ·ΡΠ΅Π½ΠΈΡ Π½Π° ΠΎΠΏΡΡ ΠΎΠ»ΠΈ ΠΊΠΎΡΡΠ½ΡΡ ΡΡΡΡΠΊΡΡΡ;
- Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΠΎΡΠ΅Π½ΠΊΠΈ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π²Π΅ΡΡ Π½Π΅ΡΠ΅Π»ΡΡΡΠ½ΡΡ ΠΏΠ°Π·ΡΡ , Π²ΠΈΡΠΎΡΠ½ΠΎΠ½ΠΈΠΆΠ½Π΅ΡΠ΅Π»ΡΡΡΠ½ΡΡ ΡΡΡΡΠ°Π²ΠΎΠ² Π΄Π»Ρ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΡΡ Π΅ΠΌΡ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΈ Π΄Ρ.
Π‘Π½ΠΈΠΌΠΎΠΊ ΠΠ’ Π·ΡΠ±ΠΎΠ² ΡΠ²Π»ΡΠ΅ΡΡΡ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΡΠΌ, ΠΈ Π΅Π³ΠΎ Π½Π΅ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡ ΡΠΎΠ»ΡΠΊΠΎ Π±Π΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌ. ΠΠΏΡΠΎΡΠ΅ΠΌ, Π΅ΡΠ»ΠΈ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½Π°Ρ ΠΏΠΎΠ»ΡΠ·Π° ΠΎΡ ΠΏΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΡΠΎΡΠ½ΠΎΠ³ΠΎ Π΄ΠΈΠ°Π³Π½ΠΎΠ·Π° ΠΏΡΠ΅Π²ΡΡΠ°Π΅Ρ Π²Π΅ΡΠΎΡΡΠ½ΡΠ΅ ΡΠΈΡΠΊΠΈ, ΠΈΠ½ΠΎΠ³Π΄Π° Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΡΠΎΠΌΠΎΠ³ΡΠ°ΠΌΠΌΡ ΡΠ΅Π»Π΅ΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎ. Π ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΈΠ»ΠΈ ΠΊΠΎΡΠ²Π΅Π½Π½ΠΎ ΠΎΡΠ½ΠΎΡΡΡΠΈΠΌΡΡ ΠΊ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΏΡΠΎΡΠΈΠ²ΠΎΠΏΠΎΠΊΠ°Π·Π°Π½ΠΈΡΠΌ ΠΎΡΠ½ΠΎΡΡΡ ΠΏΡΠΈΡ ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΡ, ΠΊΠ»Π°ΡΡΡΡΠΎΡΠΎΠ±ΠΈΡ. ΠΠ΅ΡΠΎΠ΄ Π½Π΅ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°ΠΌ, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ ΠΌΠΎΠ³ΡΡ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡΡ Π² Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΌ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΈ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ. ΠΠ΄Π½Π°ΠΊΠΎ Π΅ΡΠ»ΠΈ Π΄ΠΎΠΏΡΡΠΊΠ°Π΅ΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ΅Π΄Π°ΡΠΈΠ²Π½ΡΡ ΡΡΠ΅Π΄ΡΡΠ², ΡΡΠΎ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΠ±Π»Π΅Π³ΡΠ°Π΅Ρ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΡ.
ΠΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π° ΠΌΠ΅ΡΠΎΠ΄Π°
ΠΠ΅Π½ΡΠ°Π»ΡΠ½Π°Ρ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½Π°Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ. ΠΠ½Π° Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅ΡΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΠΌΠΈ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π°ΠΌΠΈ:
- ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΠΎΡΡΡ β Π²ΡΠ°Ρ ΠΏΠΎΠ»ΡΡΠ°Π΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΎΡΠ΅Π½ΠΈΡΡ ΡΠΊΠ°Π½ΠΈ Π²ΡΠ΅ΡΡΠΎΡΠΎΠ½Π½Π΅, ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ ΡΡΠ°ΡΡΠΊΠΈ ΠΏΠΎΠ΄ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΡΠ³Π»Π°ΠΌΠΈ, Π² Π»ΡΠ±ΠΎΠΉ ΠΈΠ· ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠ΅ΠΉ, Π΄Π΅ΡΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅. ΠΡΠΎ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ ΠΏΠΎΡΡΠ°Π²ΠΈΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΠ·;
- ΡΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΡΠΎΡΠ΅Π΄ΡΡΡ β Β«ΠΊΠ°ΡΡΠΈΠ½ΠΊΡΒ» ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π·Π° ΡΡΠΈΡΠ°Π½Π½ΡΠ΅ ΡΠ΅ΠΊΡΠ½Π΄Ρ;
- Π±Π΅Π·Π±ΠΎΠ»Π΅Π·Π½Π΅Π½Π½ΠΎΡΡΡ β ΡΠ΅Π»ΠΎΡΡΠ½ΠΎΡΡΡ ΡΠΊΠ°Π½Π΅ΠΉ Π½Π΅ Π½Π°ΡΡΡΠ°Π΅ΡΡΡ, ΡΠ°ΠΌΠ° ΠΏΡΠΎΡΠ΅Π΄ΡΡΠ° Π½Π΅ Π΄ΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ Π΄ΠΈΡΠΊΠΎΠΌΡΠΎΡΡΠ°;
- Π½ΠΈΠ·ΠΊΠ°Ρ Π»ΡΡΠ΅Π²Π°Ρ Π½Π°Π³ΡΡΠ·ΠΊΠ° β ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Π°Ρ Π½Π°Π³ΡΡΠ·ΠΊΠ° Π½Π΅ ΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π²Π»ΠΈΡΠ½ΠΈΡ Π½Π° Π·Π΄ΠΎΡΠΎΠ²ΡΠ΅ Π΄Π°ΠΆΠ΅ ΠΏΡΠΈ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ΅ΡΠΈΠΈ ΡΠ½ΠΈΠΌΠΊΠΎΠ² Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ;
Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΎΠΏΠ΅ΡΠΈΡΠΎΠ²Π°ΡΡ Π΄Π°Π½Π½ΡΠΌΠΈ ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ β ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π½Π° ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΡΠΉ Π½ΠΎΡΠΈΡΠ΅Π»Ρ ΠΈΠ»ΠΈ ΠΎΡΠΏΡΠ°Π²ΠΈΡΡ ΠΏΠΎ ΠΏΠΎΡΡΠ΅.
Π‘Π΄Π΅Π»Π°ΡΡ ΠΠ’ Π·ΡΠ±ΠΎΠ² Π² Π‘ΠΠ± Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π² ΠΠ Π‘Π’ΠΠΠ. Π‘ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ ΠΎΡΠ½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΠΎΡΡΠ΄ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ β Π°ΠΏΠΏΠ°ΡΠ°ΡΠΎΠΌ PLANMECA PROMAX 3D, Π° ΡΠ°ΠΊΠΆΠ΅ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΡΠΌ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π½Π°ΠΌ ΠΎΠΊΠ°Π·ΡΠ²Π°ΡΡ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ»ΡΠ³ΠΈ. ΠΠ½ΠΈ ΡΠ²Π»ΡΡΡΡΡ Π·Π°Π»ΠΎΠ³ΠΎΠΌ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠ»Π°Π½Π° Π»Π΅ΡΠ΅Π½ΠΈΡ, Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΡ ΠΆΠ΅Π»Π°Π΅ΠΌΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ ΠΏΡΡΠ΅ΠΌ, ΠΈΡΠΊΠ»ΡΡΠ΅Π½ΠΈΡ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠΈ ΠΎΡΠΈΠ±ΠΊΠΈ. Π£ΡΠΎΡΠ½ΠΈΡΡ ΡΠ΅Π½Ρ ΠΠ’ Π·ΡΠ±ΠΎΠ², Π·Π°ΠΏΠΈΡΠ°ΡΡΡΡ Π½Π° ΠΎΠ±ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅, Π·Π°ΠΏΠΎΠ»Π½ΠΈΠ² ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ ΡΠΎΡΠΌΡ Π½Π° ΡΠ°ΠΉΡΠ΅ ΠΈΠ»ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ½ΠΈΠ² Π½Π°ΠΌ.
90000 Computed Tomography (CT) 90001 90002 Breast CT scanner. 90003 Credit: John Boone, UC Davis 90004 90005 90006 Dedicated Breast CT Scanner: 90007 90002 90006 90007 90004 NIBIB is funding research for development of a dedicated breast CT scanner that allows the breast to be imaged in 3D and could help radiologists detect hard-to -find tumors. The scanner produces a radiation dose comparable to that of a standard x-ray mammogram and does not require compression of the breast. In this breast CT scanner, a woman lies prone in a specially designed large table with her breast suspended in a special opening in the scanning bed.The scanner rotates around the breast, without passing through the chest, thus reducing the radiation that would be delivered to the chest in a conventional CT scanner. Click here to read more about dedicated breast CT or listen to a podcast about the scanner. 90012 90005 90006 Reduction in Radiation from Routine CT Scans: 90007 NIBIB put out a call for researchers to submit groundbreaking ideas that will help to radically decrease the amount of radiation used in CT scans. Five new projects are underway from this new funding opportunity, representing creative, innovative, interdisciplinary approaches that would not have been funded otherwise.You can read more about them below: 90012 90005 90006 Customized imaging 90007 90003 90006 Web Stayman, Johns Hopkins University 90007 90003 The amount of radiation required for a CT scan depends on a number of variables, including the size of the patient, the part of the body being scanned, and the diagnostic task at hand. For example, smaller patients require less radiation than larger patients, and scanning a denser part of the body, such as soft tissue near the pelvis, requires more radiation than scanning the lungs.In addition, diagnostic tasks that require high image clarity, such as locating a faint tumor, generally require more radiation. The goal of this project is to modify both the hardware and software of modern CT systems so that the device can adapt the shape, position, and intensity of the x-ray beam to the specific imaging scenario. The research leverages patient-specific anatomical models and mathematical models of imaging performance to direct x-rays where they are needed and, consequently, to avoid or to limit x-ray exposure where it is not needed.This will help maximize imaging performance for specific diagnostic tasks while minimizing radiation exposures. 90012 90005 90006 Constructing tools for researchers 90003 Cynthia McCollough, Mayo Clinic 90007 90003 The goal of this work is to develop resources that enable the research community to easily create and compare new approaches to reducing radiation dose of routine CT scans without compromising diagnostic accuracy. So far, this has entailed creating a library of raw data from patient CT scans that researchers can manipulate to test new approaches, and developing computer-based methods for evaluating new approaches, so that researchers do not have to rely on radiologists, which can be costly and time consuming.Using these assets, researchers have demonstrated that there is considerable potential for radiation dose reduction in CT exams of the abdomen, which are among the highest dose CT exams in common clinical use. 90012 90005 90006 Faster processing 90007 90003 90006 Jeffrey Fessler, University of Michigan 90007 90003 To reduce radiation yet still produce good quality CT images, more sophisticated methods are needed to process the raw data from the CT system. Those advanced methods, called image reconstruction algorithms, can require undesirably long computing times, so they can be used only for some patients currently.The goal of this project is to develop algorithms that are fast enough to allow low-dose CT imaging to be used for every patient.> 90012 90005 90006 An integrated approach 90007 90003 90006 Norbert Pelc, Stanford Medical School 90007 90003 At every stage in the design of CT scanners, there are opportunities to make changes that reduce radiation dose. Because these changes are inter-related, the goal of this project is to take an integrated approach, exploring approaches such as modifying the photon counting detector (the part of the CT scanner that detects x-rays), dynamic x-ray illumination (adjusting the amount of radiation used throughout the duration of a scan), and image reconstruction methods.These will be tested using a table top experimental system. The researchers believe that these combined strategies can lead to as much as 80% reduction in radiation dose compared to today’s typical systems, and also enable higher resolution images. 90012 90005 90006 SparseCT 90007 90003 90006 Ricardo Otazo and Daniel Sodickson, New York University School of Medicine 90007 90003 Investigators at New York University School of Medicine, Brigham and Women’s Hospital, and Siemens Healthineers are working together to develop a new ultra-low-dose CT technique called SparseCT.The key idea behind SparseCT is to block most of the X-rays in a CT scan before they reach the patient, but to do so in a way that preserves all the essential image information. The approach combines a new x-ray blocking device with the mathematics of compressed sensing, which allows images to be reconstructed from reduced datasets. Compression sensing can be likened to filming a movie with a very fast, but low-pixel camera and then using math to convert the image to high-definition quality. 90012 .90000 What is Computed Tomography? | FDA 90001 90002 90003 Conventional X-ray Images 90004 90005 90006 90007 Figure 1: Chest X ray Image 90008 90009 90006 All x-ray imaging is based on the absorption of x rays as they pass through the different parts of a patient’s body.Depending on the amount absorbed in a particular tissue such as muscle or lung, a different amount of x rays will pass through and exit the body. The amount of x rays absorbed contributes to the radiation dose to the patient. During conventional x-ray imaging, the exiting x rays interact with a detection device (x-ray film or other image receptor) and provide a 2-dimensional projection image of the tissues within the patient’s body — an x-ray produced «photograph» called a «radiograph.» The chest x ray (Figure 1) is the most common medical imaging examination.During this examination, an image of the heart, lungs, and other anatomy is recorded on the film. 90009 90006 90013 back to top 90014 90009 90002 90003 Computed Tomography (CT) 90004 90019 90006 90007 Figure 2: Cross-sectional Image of Abdomen 90008 90009 90006 Although also based on the variable absorption of x rays by different tissues, computed tomography (CT) imaging, also known as «CAT scanning» (Computerized Axial Tomography), provides a different form of imaging known as cross-sectional imaging.The origin of the word «tomography» is from the Greek word «tomos» meaning «slice» or «section» and «graphe» meaning «drawing.» A CT imaging system produces cross-sectional images or «slices» of anatomy, like the slices in a loaf of bread. The cross-sectional images (Figure 2) are used for a variety of diagnostic and therapeutic purposes. 90009 90006 90013 back to top 90014 90009 90002 90003 How a CT system works 90004 90033 90006 90007 Figure 3: Patient in CT Imaging System 90008 90009 90038 90039 A motorized table moves the patient (Figure 3) through a circular opening in the CT imaging system.90040 90039 As the patient passes through the CT imaging system, a source of x rays rotates around the inside of the circular opening. A single rotation takes about 1 second. The x-ray source produces a narrow, fan-shaped beam of x rays used to irradiate a section of the patient’s body (Figure 4). The thickness of the fan beam may be as small as 1 millimeter or as large as 10 millimeters. In typical examinations there are several phases; each made up of 10 to 50 rotations of the x-ray tube around the patient in coordination with the table moving through the circular opening.The patient may receive an injection of a «contrast material» to facilitate visualization of vascular structure. 90040 90039 Detectors on the exit side of the patient record the x rays exiting the section of the patient’s body being irradiated as an x-ray «snapshot» at one position (angle) of the source of x rays. Many different «snapshots» (angles) are collected during one complete rotation. 90040 90039 The data are sent to a computer to reconstruct all of the individual «snapshots» into a cross-sectional image (slice) of the internal organs and tissues for each complete rotation of the source of x rays.90040 90047 90006 90013 back to top 90014 90009 90002 90003 Advances in Technology and Clinical Practice 90004 90055 90006 90007 Figure 4: CT Fan Beam 90008 90009 90006 Today most CT systems are capable of «spiral» (also called «helical») scanning as well as scanning in the formerly more conventional «axial» mode. In addition, many CT systems are capable of imaging multiple slices simultaneously. Such advances allow relatively larger volumes of anatomy to be imaged in relatively less time.Another advancement in the technology is electron beam CT, also known as EBCT. Although the principle of creating cross-sectional images is the same as for conventional CT, whether single- or multi-slice, the EBCT scanner does not require any moving parts to generate the individual «snapshots.» As a result, the EBCT scanner allows a quicker image acquisition than conventional CT scanners. 90009 90006 90013 Some Photos Copyright Β© 2002 GettyImages 90014 90009 90006 90013 back to top 90014 90009 90003 Required Reports for Industry 90004 90072 90039 90003 Content current as of: 90004 90006 90077 12/05/2017 90078 90009 90040 90039 90040 90083 .90000 13. Cone-Beam Computed Tomography: Anatomy 90001 90002 Maxilla and Midfacial Bones 90003 90004 The maxilla and palatine bones form the upper jaw. The maxilla comprises a pyramidal-shaped body and four processes-alveolar, palatine, zygomatic, and frontal. The alveolar and palatine processes articulate in the midline to form the intermaxillary suture between the central incisors, best evaluated on coronal and axial sections. Examine the alveolar process, which forms the bone around the maxillary teeth, along with the maxillary teeth and supporting periodontal structures.In particular, owing to their three-dimensional nature, CBCT scans demonstrate the relationship of the molar and premolar teeth to the floor of the maxillary sinus better than periapical and panoramic radiographs. A common anatomic finding is pneumatization of the alveolar process by the maxillary sinus, which may invaginate between tooth roots (Fig. 13-5). 90005 90006 90007 FIGURE 13-5 Coronal 90008 (A) 90009 and sagittal 90008 (B) 90009 CBCT sections through the maxillary posterior region demonstrating the relationship between the teeth and the maxillary sinus floor 90012 (arrows) 90013.The corticated border of the sinus dips in between the tooth roots. Dilaceration of the mesiobuccal root of the maxillary molar is depicted on the coronal image. 90004 The palatine processes are thick horizontal bony projections that form the anterior three-fourths of the hard palate and the floor of the nasal cavity. The integrity and symmetry of the cortical bony contour are best visualized on coronal sections (see Plates 13-4 and 13-5). Disruption of the hard palate suggests developmental disturbances, such as a cleft palate.Areas of bony protuberances or tori are frequently noted, especially in the midline. Numerous nutrient canals also may be observed perforating the cortical outline of the hard palate on high-resolution scans. 90005 90004 The incisive foramen is located in the midline on the anterior aspect of the palatine process, immediately palatal to the maxillary central incisors (Fig. 13-6; see Plate 13-7). Within this foramen are two lateral canals-the incisive canals or foramina of Stensen-that transmit the terminal branch of the descending palatine artery and the nasopalatine nerve.Occasionally, there may be two additional midline canals-the foramina of Scarpa, which transmit the nasopalatine nerves. The shape and size of the incisive foramen is appreciated on axial sections (see Plates 13-2 and 13-3). There is considerable variation in the size of the nasopalatine canal and incisive foramen. It is important to differentiate between a large incisive foramen and an incisive canal cyst because the latter can cause localized dilation of the canal or widening of the incisive foramen and may cause displacement of teeth (see Chapter 21).90005 90018 90007 FIGURE 13-6 90008 A 90009 and 90008 B, 90009 Sagittal CBCT sections through the midsagittal plane showing the course of the nasopalatine canal 90012 (yellow arrow) 90013 and the opening of the incisive foramen 90012 (white arrow) 90013. Note /> Only gold members can continue reading. Log In or Register to continue .90000 Cone Beam Computed Tomography in Orthodontics 90001 90002 1. Introduction 90003 90004 The key of a successful orthodontic treatment is an accurate diagnosis, growth evaluation and treatment planning. Diagnostic records for an orthodontic treatment planning generally begin with history and intraoral and extraoral examination of the patient. Dental casts, intraoral and extraoral photographs are also routine diagnostic materials. Imaging is a necessary diagnostic tool in the practice of orthodontics.For radiographic evaluation, panoramic radiograph, periapical views, upper occlusal radiograph and lateral cephalometric radiograph are obtained if indicated. Imaging should answer the questions that can not be solved clinically. By using radiographic examination, it is possible to confirm or rule out clinical findings [1]. 90005 90004 In recent years, orthodontists have begun to use three-dimensional (3D) cone beam computed tomography (CBCT) images to overcome the inadequateness of two-dimensional (2D) radiographic records.When computed tomography was first introduced into the dental field, because of the high radiation dose, it is not preferred for orthodontic diagnosis. The technology has been evolving ever since, resulting in a reduction in radiation dose and relatively low cost of CBCT systems, so they become popular to visualize the craniofacial complex in three dimensions. 90005 90004 In some studies, it has been suggested that different options for orthodontic treatment plans in some specific cases may change due to use of CBCT [2-4].Orthodontists should know how to use the radiographic records and what they offer, before deciding which tool they will use [1]. 90005 90002 2. Advantages and disadvantages of using CBCT in orthodontics 90003 90004 Although there has been considerable interest in using CBCT as a part of routine orthodontic management, diverse results about the advantages, disadvantages and indications were noted in the literature. 90005 90004 The review of recent literature reveals some advantages [1, 5-15] and disadvantages [16-20] as following: 90005 90016 2.1. Advantages 90017 90018 90019 90004 Accuracy of image geometry is increased, and real size 3D image is obtained by CBCT. Unlike lateral cephalometric radiographs, CBCT image is more similar to the patient, more accurate and distortion-free. 90005 90022 90019 90004 It eliminates the magnification, overlapping and distortion of structures. 90005 90022 90019 90004 It is possible to assess the image from the three planes. 90005 90022 90019 90004 CBCT images allow to make localized and specific transversal cuts to assess areas of clinical interest.90005 90022 90019 90004 For a proper diagnosis and treatment planning, sometimes temporomandibular, posteroanterior cephalograms, periapical, occlusal and bite-wing radiographs are also required besides the routine panoramic and lateral cephalometric examination. But, by using CBCT technology, it is possible to produce several types of radiographic images and to construct study casts from a single scan. 90005 90022 90019 90004 The reorientation of the images, on the contrary to the lateral cephalometric radiograph, is possible.90005 90022 90019 90004 The ease of landmark identification and high precision of superimposed images have been reported. 90005 90022 90019 90004 By the use of CBCT, less variability and more reproducibility of transverse measurements were demonstrated compared to conventional 2D. CBCT images were reported to be more reliable than posteroanterior cephalograms and offer an unobstructed view for diagnosis of maxillary transverse discrepancies. 90005 90022 90019 90004 The unerupted tooth sizes, bone dimensions and even soft tissue anthropometric measurements can be assessed precisely by CBCT.90005 90022 90019 90004 The fine adjustment of the head position is not essential for CBCT. 90005 90022 90019 90004 The use of CBCT in orthodontics greatly enhances evaluation of impacted canines and offers comprehensive information. 90005 90022 90019 90004 The detection of root resorption is reported to be highly accurate with CBCT scanners. 90005 90022 90019 90004 An occlusal view of the maxilla from CBCT can be used for the customized transpalatal arch design. This might prevent interfering of the wire to the path of eruption of impacted tooth.90005 90022 90071 90016 2.2. Disadvantages 90017 90018 90019 90004 The amount of generated radiation is the biggest controversy about the use of CBCT in dental imaging. Although the radiation dose of the CBCT is lower than the medical spiral CT, it is still higher than that of a 2D cephalogram. 90005 90022 90019 90004 Difficulty in differentiating various soft tissues in the image due to the poor low-contrast resolution compared to medical CT is one of the disadvantages. 90005 90022 90019 90004 An adequate method to digitize and analyze 3D radiographic images is not still improved.90005 90022 90019 90004 The lack of 3D standard population norms has also restricted CBCT from routine orthodontic use. 90005 90022 90019 90004 Landmark identification on coronal, sagittal and axial views of CBCT is more time consuming to carefully select the best slice. 90005 90022 90019 90004 The diagnostic accuracy for caries detection with CBCT is less than with conventional periapical radiographs. 90005 90022 90071 90002 3. The usage of CBCT in orthodontics 90003 90004 Many orthodontists interested in using CBCT during their routine diagnosis and treatment planning because of the additional diagnostic information.This brings the risk of unnecessary ionizing radiation. So, it is mandatory to determine exact indications for the use of CBCT in orthodontics. 90005 90016 3.1. Impacted and transposed teeth 90017 90004 Tooth impaction is a commonly observed dental anomaly which needs orthodontic treatment. The most frequent impacted teeth were mandibular wisdom teeth, which were followed by maxillary and mandibular canines [21]. Radiographic examinations play a more critical role than clinical examination especially in the initial diagnosis and treatment planning of impacted teeth.For several years, radiographic evaluation of these teeth was done by using panoramic, periapical, occlusal or lateral cephalograms. These conventional two dimensional radiographs are inadequate in accurately visualizing the location, angulation, spatial position and relationships of the impacted tooth in three dimensions. So, the most justified indications for the use of CBCT in orthodontics are the existence of impacted and transposed teeth (Figure 1a-c). 90005 90108 Figure 1. 90109 90004 (a) Panoramic view of a maxillary impacted canine.Note that in this case, FOV was restricted only to maxilla. (B) Determination of vestibular location of a maxillary impacted canine. (C) Evaluation of proximity between impacted canine and root of lateral incisor by CBCT. 90005 90004 For the management of the impacted teeth, CBCT enhances the ability to localize these teeth accurately, evaluate their proximity to other teeth and structures, determine the alveolar width and follicle size, the presence of pathology and assess root resorption of adjacent teeth, assist in planning surgical access and bond placement, besides determining optimal direction for the extrusion of these teeth into the oral cavity [22-25].In particular, for impacted teeth, if exposure or forced eruption is planned, it would be possible to determine not only the position of tooth and dilacerated root but also the alveolar boundary conditions. Additionally, it would be much easier to prepare the space needed for the impacted tooth as it is possible to obtain a more accurate size from CBCT images. 90005 90004 Haney et al. [26] reported an approximate 20% lack of agreement among clinicians on the location (palatal versus labial) of the tooth tip between the routine 2D radiographs and 3D CBCT images.Also large differences in treatment approaches were demonstrated when the two imaging methods were compared [27]. On the other hand, in another study, it was reported that the determination of canine position was not significantly different when using panoramic and CBCT systems [3]. 90005 90004 Using CBCT improves the clinician confidence in diagnosis and treatment plan as it is helpful in defining the surgical access site, bond position and in designing mechanics [25, 26]. The orthodontists have a different perception of localization and can determine the shortest way for the impacted tooth in three planes of space while avoiding damage to neighboring teeth.90005 90004 In some studies, it was suggested that orthodontic treatment planning for impacted tooth showed no differences when using 2D- or 3D-based information. On the contrary, findings of some other studies showed that orthodontists changed their treatment planning derived from conventional radiographs for 25% of the impacted teeth when they viewed CBCT images [26, 28]. Alqerban et al. [4, 29] concluded that CBCT allows clinicians to obtain 3D images with visualization of craniofacial structures and significantly increases the orthodontists ‘confidence level, with more information on canine localization and detection of possible root resorption on adjacent incisors [30].90005 90004 When the impacted tooth did not move, CBCT is indicated. Becker et al. [31] reported that invasive cervical root resorption is a rare insidious and aggressive form of external root resorption and an overlooked cause of failure of orthodontic resolution of impacted canines. 90005 90004 CBCT minimizes superimposition artifacts and provides superior visualization of roots [24, 32]. In extraction cases with an impacted tooth, it is a much more important to decide which tooth to extract, a tooth with a resorbed root or a healthy premolar? Using CBCT images will contribute to a logical clinical outcome, as it provides superior information on root resorption.90005 90004 Overall, it could be considered to increase efficiency and enhance success rates for the treatment of impacted teeth when the treatment and biomechanics are customized by using CBCT [33]. 90005 90004 Field of view (FOV) must be determined according to the needs of the case. If the only problem is an impacted tooth, it would be logical to localize the FOV as the impacted tooth, adjacent teeth and surrounding alveolar structure. In fact, in a recent study, Wriedt et al. [30] recommended small volume FOV CBCT for impacted maxillary canines if the canine inclination on a conventional 2D panoramic radiograph exceeds 30 Β° relative to a perpendicular midline, when adjacent root resorption is suspected, and / or when canine root dilaceration is suspected on conventional panoramic radiographs.But if an orthognathic surgical treatment plan is predicted, cephalometric and panoramic radiograph need must be considered while determining FOV. It is advisable to refer the patient to an oral and maxillofacial radiologist with a note including clinically significant findings and request a report on the region of interest [27]. 90005 90004 Maxillary lateral incisor root resorption is most commonly associated with canine impaction. It often remains asymptomatic, limiting early diagnosis. However, early diagnosis is important, because the presence or absence of root resorption will determine the treatment strategy.Furthermore, advanced root resorption can make treatment impossible [34]. Improvement in diagnostic measures for early detection and prevention is therefore essential for ensuring correct treatment, and it might also reduce treatment time, complexity, complications and costs. It has been suggested that by using 3D images, overlapping of structures can be avoided. 90005 90004 Dental transposition represents a multifactorial condition. In the etiology of transposition, both genetic and environmental factors play an important role [35].For the diagnosis and treatment planning of transposed teeth, several significant variables can be derived from CBCT imaging, especially, critical when deciding whether patient requires extraction or not. So, it would be much easier to evaluate adequately the quality and shape of teeth, location of roots and limitations of the alveolar boundary conditions around the transposed teeth by using CBCT. Kapila et al. [28] recommended to be selective about which cases may benefit from CBCT scans for assessing boundary conditions.Cases with compromised periodontal or gingival conditions, patients with narrow alveolar bone in which it would be critical to manage buccolingual displacements or angulations of teeth, and cases who need shifting position of the teeth are listed as cases that will benefit from CBCT scans. 90005 90016 3.2. Supernumerary teeth 90017 90004 A supernumerary tooth may closely resemble the teeth of the group to which it belongs [36]. In supernumerary cases, radiographic examination aims to determine the localization and the morphology of the supernumerary teeth.As it is critical to decide which teeth to be extracted and which teeth to be retained, CBCT helps to precisely evaluate the position and morphology of these teeth. It is also possible to detect any contact between the supernumerary teeth and adjacent teeth and to evaluate their relation with other anatomical structures. The information obtained from CBCT images also facilitates the determination of the optimal surgical access to these teeth in order to minimize harm to adjacent teeth and to surrounding tissue [37] (Figure 2).90005 90108 Figure 2. 90109 90004 Evaluation of position of a supernumerary tooth and impacted incisor and their relation with neighboring structures. 90005 90016 3.3. Root resorption 90017 90004 Root resorption is a condition occurs in response to a variety of stimuli resulting in a loss of dentin, cementum or bone [36]. Panoramic radiographs have a week diagnostic efficacy in determining external root resorption. So, root resorption has traditionally been evaluated by periapical radiographs.Nevertheless, in recent years, it is suggested that CBCT can detect precise images of small root defects with a greater sensitivity and specificity compared to 2D radiographs [3, 24]. In a meta-analysis, Yi et al. [38] reported that CBCT is superior to periapical radiographs in the accuracy of diagnosing external root resorption. They emphasized that periapical radiographs provide limited information of external root resorption in the buccal and lingual root surface. 90005 90004 External root resorption of maxillary lateral incisor is a common finding that associates with canine impaction.Early diagnosis is difficult as it is asymptomatic and advanced root resorption makes the treatment planning more complex. In a study evaluating efficacy of CBCT for the diagnosis of root resorption associated with impacted canines, improved detection rates of root resorption (63%) were reported [39]. By using CBCT, it is possible to visualize of root resorptions on buccal and lingual surfaces. This might be critical for the extraction decision during treatment planning. In another study, it was suggested that the combination of thin slices and high resolution caused overestimation of the cavities for moderate root resorption cases [3].90005 90004 The main problem is to decide how and when a clinician justify taking CBCT scan when a patient has undergone root resorption. Yi et al. [38] suggested that patients with clinically suspected root resorption be first evaluated by periapical radiographs. If positive results are obtained, for further examination, CBCT should be considered. 90005 90004 Alqerban et al. [10] reported that all CBCT systems used in their study showed high accuracy in the detection of root resorption, and there was no significant difference among CBCT systems in the detection of the severity of root resorption.Limitations of using CBCT for external root resorption are the detection of small resorptions in the apical third and the high dose of radiation required [3]. 90005 90016 3.4. Evaluation of root angulation and length 90017 90004 CBCT imaging becomes a preferred method for diagnosis by orthodontists because of its three dimensional rendering capability. Root position and morphology are critical issues for an orthodontist as it may affect the final occlusion. Root anatomy, such as short or dilacerated, is a determinant factor for the amount and direction of a tooth movement.Furthermore, because of the concerns about external root resorption, orthodontists need to get precise measurements of root angulation and length before treatment. Using CBCT images also provide detailed information about dysmorphic roots. Root positioning and morphology might be indicators of a disease. Of course, all root anomalies are not identical, but when supported with genetic testing, CBCT imaging will be helpful in interpreting anomalous root morphology in syndromic cases [40]. 90005 90016 3.5. Tooth-bone relationship 90017 90004 In bimaxillary protrusion cases, Class 3 patients with an initial symphysis bone width, cases with preexisting periodontal disease, after maxillary expansion treatment, CBCT provides valuable information about tooth-bone relationships, and it might reduce the risk factor for dehiscence. While assessing deficiencies of buccolingual thickness in the alveolar ridge of patients subjected to critical tooth movement, high resolution and a limited FOV is recommended [41].90005 90016 3.6. Cleft lip and palate (CLP) cases 90017 90004 Patients with CLP are treated by interdisciplinary teams from infancy until adulthood. Several types of surgical procedures are used to reconstruct the anatomy of the alveolar ridge, dentofacial region, lips and nose. The SEDENTEXCT Consortium stated, in regard to the radiation dose, that «the application of CBCT in cleft lip and palate patients was found to be the simplest to support» in dentistry [42]. However, in a recent systematic review, it was suggested that further investigation is necessary to determine the influence of this new 3D facial imaging modality on treatment planning, treatment outcome and treatment evaluation.90005 90004 The preoperative CBCT may provide reliable estimates on how much expansion and graft material will be needed, aid in appropriate selection of an autogenous graft donor site before surgery and enable the visualization of the three-dimensional morphology of the bone bridge, the relationship between the bone bridge and roots of the neighboring teeth. For alveolar bone graft success, determination of the buccal-palatal width of the bone in CLP cases, the use of CBCT is recommended [43] (Figure 3).Pharyngeal space, the results of bone grafting, and the effect of nasoalveolar molding can be evaluated with a post-treatment CBCT. 90005 90108 Figure 3. 90109 90004 Preoperative CBCT view of a CLP case showing the graft site. 90005 90016 3.7. Temporomandibular joint (TMJ) morphology and pathology contributing to malocclusion 90017 90004 The changes in the size, form and special and functional relationships of the TMJ components might cause pathological TMJ conditions. TMJ disorders which occurred during active growth period might alter jaw, tooth positions and occlusion.Even though signs and symptoms of disturbances in the masticatory system are common, understanding the cause can be very complex. A proper diagnosis is possible, if only a through history and examination were achieved. Various types of imaging techniques can be used to gain additional information regarding the health and function of TMJs. CBCT is indicated for orthodontic cases that require analysis of TMJ bone components accompanied by signs and symptoms [44, 45]. One of the greatest advantages of CT scan is evaluating the condyle-disk relationship [46].In comparison with panoramic radiograph and linear tomography, CBCT proves more accurate in diagnosing erosion of the condyle [47]. Soft tissue imaging is possible, but bony tissues are best imaged with CT scans [48]. As magnetic resonance imaging enables visualizing the non-mineralized soft tissues, it is preferable for the diagnosis of internal derangements of TMJ. However, it is not possible to observe dynamic joint movements. 90005 90004 Besides the evaluation of TMJ disorders, CBCT has been used to evaluate the condylar changes after orthodontic treatment.It allows volumetric evaluation of TMJ and provides better landmark identification on curved surfaces like condyle. Literature review showed that CBCT evaluation was preferred to determine respond of TMJ to mandibular advancement [49] or extraction treatment [50] and effects of the distraction splint therapy in mandibular asymmetry cases. 90005 90016 3.8. Airway morphology and obstructive sleep apnea (OSA) 90017 90004 Sleep-disordered breathing is a spectrum of conditions with abnormal respiratory pattern, and OSA is the severe end of that spectrum.Orthodontics takes place in the management of OSA by using mandibular advancement appliances and by planning orthognathic surgery in these cases. It is also crucial to evaluate the dimensional changes in the nasopharyngeal area and airway obstruction in CLP [51]. Until recent years, lateral cephalometric radiography was used for the evaluation of the upper airway. But, changes which occur in the transverse dimension can not be visualized. Three-dimensional analysis and evaluation of airway have got a significant attention in the literature.CBCT allows orthodontists to measure cross-sectional area, minimum cross section and total volume of the patient’s airway accurately. Also, it has been used to investigate the effects of orthodontic treatments and orthognathic surgery on airway dimensions. 90005 90004 Studies of the upper airway based on CBCT scans are considered to be reliable in providing important information about the morphology of the pharyngeal airway; however, they have limitation in distinguishing different types of soft tissues [52].Variations in airway dimensions and morphology due to patient’s swallowing movement and head posture are also among the limitations of this technique [53]. 90005 90016 3.9. Maxillary transverse dimension and maxillary expansion 90017 90004 In the treatment of transverse maxillary deficiencies, it is important to assess transverse dimension as early as possible and accurately diagnose the need for transverse maxillary expansion using proper diagnostic tools. Before CBCT, post-treatment skeletal changes on patients treated with RME were measured on dental casts, lateral and posterior-anterior cephalometric and occlusal radiographs.Researches to date on rapid maxillary expansion have focused on determining treatment outcomes like dental tipping, alveolar bone bending, skeletal expansion and soft tissue changes, rather than the benefits of CBCT in diagnosis and treatment planning. Nowadays, it is claimed that CBCT images appear to be more reliable than posteroanterior cephalograms, offer an unobstructed view for the assessment of transversal intermaxillary discrepancies and provide much greater resolution and minimal image distortion [15].However, the radiation dosage and its effect on growing patients must be taken into account. 90005 90004 The mid-palatal suture becomes more fused after the completion of the adolescent growth spurt [54], as prediction of mid-palatal suture maturation is possible by using CBCT [55]. It is a reliable diagnostic tool, while planning surgically assisted rapid maxillary expansion (SARME) in skeletally mature patients or using bone-borne devices, which have recently gained popularity. It is possible to determine treatment outcomes of SARME and also permits the detection of the complications, such as tooth tilting of the anchoring teeth and bone fenestration due to periodontal stress [56].90005 90016 3.10. Temporary anchorage device (TAD) placement 90017 90004 In recent years, TADs are considered as a prerequisite for the resistance of unwanted tooth movements during the treatment of various orthodontic problems without patient compliance. The most common indications for treatment with TADs are molar protraction followed by indirect skeletal anchorage for space closure, intrusion of supraerupted teeth, intrusion of anterior to manage anterior open bite, anterior en-masse retraction, molar uprighting, intrusion of maxillary cant, molar distalization , traction on impacted canine, and attachment for protraction facemask.CBCT images can be helpful to anchor the miniscrew and miniplate securely in the surrounding bone and to visualize neighboring structures for avoiding damage or complications during TAD placement and be useful in identifying optimal site location (Figure 4). 90005 90108 Figure 4. 90109 90004 Planning and preparation of TAD (zygomatic skeletal anchorage) on a 3D model obtained from CBCT before surgery. 90005 90004 CBCT technology enables us to evaluate the interradicular distance and thickness, transverse bone thickness, bone density and thickness, cortical bone dimensions and quality.Even though anterior palate offers the greatest bone thickness, Holm et al. [57] recommended a CBCT evaluation for maximum screw length, as there is considerable variation of bone thickness between individuals. Before placing a miniscrew by using CBCT, it is also possible to define even cranial and caudal boundaries, besides alveolar boundary conditions, and eliminate the risk of bone and root perforations. Surgical guides fabricated using CBCT images will help to avoid possible root and maxillary sinuses damage.Finite element analysis constructed using CBCT will also guide the evaluation of mechanical advantages or disadvantages of the orthodontic appliances with TADs by simulating stress distribution. 90005 90004 There are several factors that affect the stability and success rate of TADs. If cortical bone thickness is less than 1 mm, primary stability may not be achieved, and the TAD may loosen during orthodontic treatment [58]. Evaluation of cortical bone quantity and quality is also critical for long-term stability.With finite element analysis, it has been shown that root contact is also one of the factors that can cause loss of miniscrew stability [59]. The information gathered from CBCT will be determinant for some of these factors, such as the dimension and insertion angle of the miniscrew, the insertion procedure, the depth of the screw insertion and insertion torque [38, 57, 60]. 90005 90004 In some cases, routine panoramic, lateral and frontal cephalometric radiographs may not provide all information needed to optimize the location of a miniscrew placement.However, it should be kept in mind that in regions with a high bone quality, such as paramedian palate and palatal region, lateral cephalometric radiographs are usable to determine the location of TADs. Therefore, it is not necessary to take a CBCT in all cases [61]. 90005 90004 It is recommended to use the smallest possible FOV unless the CBCT is needed for the diagnosis of another condition in which case a large FOV may be preferred [60]. 90005 90016 3.11. Dentofacial deformities and craniofacial anomalies 90017 90004 Evaluation of changes in the craniofacial region during growth and with treatment using lateral cephalograms makes a great contribution to the science of orthodontics.However, in recent years, researches discussed the validity of evaluating a 3D craniofacial structure in a 2D plane. CBCT imaging can provide valuable information about dentofacial deformities and craniofacial anomalies, like facial asymmetry which affects three dimensions of the face, and it can be used to simulate virtual treatment plans for orthopedic corrections, orthognathic surgeries and distraction osteogenesis. By capturing images and analyzing the craniofacial hard and soft tissues and by generating virtual patient models, CBCT imaging permits the clinicians to reposition and reconstruct craniofacial structures (Figure 5a, b).90005 90108 Figure 5. 90109 90004 (a) 3D view of a case with Golden Haar syndrome. Note the asymmetric growth of left and right condyles. (B) 3D evaluation of mandible and condyles in this case. 90005 90004 Several studies were conducted to determine reference planes, to develop cephalometric analysis, to evaluate the accuracy of these measurements, to establish the mean normality values ββand to assess the differences of gender and ethnic groups for 3D evaluations [62]. Besides morphological analysis, these images are used to evaluate the spatial relationship of the neighboring structures.CBCT technology enables carrying out the model surgery. So, computer assisted orthognathic surgery permits the design and fabrication of the occlusal surgical splints. By using virtual models, constructing anatomically grafts and correct replacement can be achieved (Figure 6). The data obtained from CBCT provide a better prediction of soft tissue response to the changes in the hard tissue after orthognathic surgery [63]. In the literature, CBCT is recommended for the assessment of preoperative orthodontic decompensation of maxillary and mandibular incisors [64].This is an additional information from CBCT that is taken for orthognathic surgery planning, and it could not be one of the main purpose of using CBCT. Furthermore, CBCT proves a good method to assess TMJ after orthognathic surgery, particularly when there is considerable potential for resorption of the condyle [14]. 90005 90108 Figure 6. 90109 90004 Presurgical 3D model of a case with Crouzon syndrome obtained from CBCT. 90005 90016 3.12. Treatment outcomes 90017 90004 Taking CBCT at the end of orthodontic treatment is a controversial issue.However, it must be taken into consideration that studies on response to treatment can help elucidate clinical questions on variability of outcomes of treatment. There are studies assessing treatment outcomes of orthognathic surgery, maxillary expansion, bone grafting and several orthopedic appliances. A review of literature showed that jaw and teeth relationships, soft tissue, hyoid bone position, pharyngeal airway dimensions and morphology were evaluated after orthodontic and surgical treatments.To facilitate the evaluation of treatment outcomes, superimposition methods for CBCT images were also offered [28]. 90005 90016 3.13. Evaluation of cervical vertebral maturation (CVM) 90017 90004 Skeletal maturation of patients is an important factor while planning orthodontic treatment. Hand-wrist and CVM methods were used for assessing the adolescent growth peak. It is suggested that the CBCT images may be useful for estimates of skeletal maturation, although they should not be used solely for that purpose [65].Shim et al. [66] claimed that the estimate of maturation stages of the cervical vertebrae on CBCT provided a reliable evaluation of pubertal growth support and strongly positive correlations with lateral cephalograms and hand-wrist radiographs. 90005 90002 4. Radiation dose 90003 90004 Radiation dose depends on the CBCT scanner’s specifications, milliampere setting, peak kilovoltage (kVp), voxel size, sensor sensitivity and number of images obtained, the time of scanning, and FOV. It is recommended to apply the 3D evaluation when the use of CBCT can be justified.Clinicians should always keep in mind that the radiation exposure to a human being should be kept «As Low As Reasonably Achievable» (ALARA) principle. 90005 90004 SEDENTEXCT project guidelines include a variety of topics, like justification, referral criteria, optimization, training, quality assurance and staff protection aspects [67]. Justification of using CBCT in dentistry can be considered if only a patient history and clinical information are available, if additional new information is expected, and if 2D radiographs are inadequate for diagnosis.The orthodontist should weigh the potential benefits of a CBCT against the chance of causing cancer for each patient. The chance may be small, but it is never negligible. 90005 90004 To reduce the patient dose, the smallest available volume size should be preferred. kVp and mAs of CBCT used in dental and maxillofacial region vary in a wide range and patients ‘doses varies considerably. It is recommended to standardize exposure parameters in dental and maxillofacial CBCT for each imaging task [68].Gamache et al. [7] suggested that the total radiation exposure from CBCT scans can be reduced by while maintaining adequate image quality using low kV and moderate-to-high mA settings rather than the manufacturer-recommended settings. 90005 90004 Voxel size should be determined according to the purpose of the exam. When voxel dimension decreases, a better spatial resolution will be achieved, but the radiation dose will be increased [70]. Voxel sizes of 0.3-0.4 mm should be preferred if there is no need for a high level of detail [41].90005 90004 Using child dose is offered because effective doses are higher compared with adults if exposure factors are not adapted. In a study on estimation of pediatric organ and effective doses from dental CBCT in 2012 it was reported that the average effective doses to the 10-year-old and adolescent phantoms were 116 and 79 mSv, respectively, which are similar to adult doses. So, the authors concluded that dental CBCT examinations on children should be fully justified over conventional X-ray imaging due to the higher radiosensitivity of children and that dose optimization by FOV collimation is particularly important in young children [69].FOV should be restricted as much as possible [42]. So, the examination should include only the areas of interest in order to minimize radiation dose and ALARA principle must be followed. Repeated CBCT examinations should be avoided. The patient must be informed, and consent of the patient or parents must be obtained. 90005 90004 Technical properties of CBCT units were given inadequately in several studies. To make a comparison based on effective dose between studies, these properties must be reported and more evidence base studies on effective dose and image quality relation are still needed [70].90005.