Систем кад: CAD системы: что это такое, расшифровка аббревиатуры и особенности программ

Содержание

Обзор популярных систем автоматизированного проектирования

Система автоматизированного проектирования (САПР) – сложный комплекс средств, предназначенный для автоматизации проектирования.

Согласно принятым в 1980-х годах стандартам, САПР – это не просто некая программа, установленная на компьютере, это информационный комплекс, состоящий из аппаратного обеспечения (компьютера), программного обеспечения, описания способов и методов работы с системой, правил хранения данных и многого другого.

Однако, с приходом на отечественный рынок иностранных систем, широкое распространение получили аббревиатуры CAD (Computer Aided Design), которую можно перевести, как проектирование с применением компьютера, и CAD-system, которую можно перевести, как система для проектирования с помощью компьютера.

В настоящее время в среде специалистов по САПР многие термины утратили свой первоначальный смысл, а термин САПР теперь обозначает программу для автоматизированного проектирования. Другими словами, то, что раньше называлось ПО САПР или CAD-системой, теперь принято называть системой автоматизированного проектирования (САПР). Также можно встретить названия CAD-система, КАД-система, система САПР и многие другие, но все они обозначают одно – некую программу для автоматизированного проектирования.

На современном рынке существует большое количество САПР, которые решают разные задачи. В данном обзоре мы рассмотрим основные системы автоматизированного проектирования в области машиностроения.

Базовые и легкие САПР

Легкие системы САПР предназначены для 2D-проектирования и черчения, а также для создания отдельных трехмерных моделей без возможности работы со сборочными единицами.

Безусловный лидер среди базовых САПР – AutoCAD.

AutoCAD

AutoCAD — это базовая САПР, разрабатываемая и поставляемая компанией Autodesk. AutoCAD – самая распространенная CAD-система в мире, позволяющая проектировать как в двумерной, так и трехмерной среде. С помощью AutoCAD можно строить 3D-модели, создавать и оформлять чертежи и многое другое. AutoCAD является платформенной САПР, т.е. эта система не имеет четкой ориентации на определенную проектную область, в ней можно выполнять хоть строительные, хоть машиностроительные проекты, работать с изысканиями, электрикой и многим другим.

Система автоматизированного проектирования AutoCAD обладает следующими отличительными особенностями:

  • Стандарт “де факто” в мире САПР
  • Широкие возможности настройки и адаптации
  • Средства создания приложений на встроенных языках (AutoLISP и пр.) и с применением API
  • Обилие программ сторонних разработчиков.

Кроме того, Autodesk разрабатывает вертикальные версии AutoCAD — AutoCAD Mechanical, AutoCAD Electrical и другие, которые предназначены для специалистов соответствующей направленности.

Bricscad

В настоящее время на рынке появился целый ряд систем, которые позиционируются, как альтернатива AutoCAD. Среди них можно отдельно отметить Bricscad от компании Bricsys, которая очень активно развивается, поддерживает напрямую формат DWG и имеет целый ряд отличий, включая инструменты прямого вариационного моделирования, поддержку BIM-технологий.

САПР среднего уровня

Средние системы САПР — это программы для 3D-моделирования изделий, проведения расчетов, автоматизации проектирования электрических, гидравлических и прочих вспомогательных систем. Данные в таких системах могут храниться как в обычной файловой системе, так и в единой среде электронного документооборота и управления данными (PDM- и PLM-системах). Часто в системах среднего класса присутствуют программы для подготовки управляющих программ для станков с ЧПУ (CAM-системы) и другие программы для технологического проектирования.

САПР среднего уровня – самые популярные системы на рынке. Они удачно сочетают в себе соотношение “цена/функциональность”, способны решить подавляющее число проектных задач и удовлетворить потребности большей части клиентов.

Autodesk Inventor

Профессиональный комплекс для трехмерного проектирования промышленных изделий и выпуска документации. Разработчик – компания Autodesk.

Среди особенностей Inventor стоит отметить:

  • Продвинутые инструменты трехмерного моделирования, включая работу со свободными формами и технологию прямого редактирования
  • Поддержку прямого импорта геометрии из других САПР с сохранением ассоциативной связи (технология AnyCAD)
  • Тесную интеграцию с программами Autodesk — AutoCAD, 3ds Max, Alias, Revit, Navisworks и другими, что позволяет использовать Inventor для решения задач в разных областях, включая дизайн, архитектурно-строительное проектирование и пр.
  • Поддержку отечественных стандартов при проведении расчетов, моделировании и оформлении документации
  • Обширные библиотеки стандартных и часто используемых элементов
  • Обилие мастеров проектирования типовых узлов и конструкций (болтовые соединения, зубчатые и ременные передачи, проектирование валов и колес и многое другое)
  • Широкие возможности параметризации деталей и сборок, в том числе управление составом изделия
  • Встроенную среду создания правил проектирования iLogic.

Для эффективного управления процессом разработки изделий, управления инженерными данными и организации коллективной работы над проектами, Autodesk Inventor может быть интегрирован с PLM-системой Autodesk Vault и схожими системами других разработчиков.

SolidWorks

Трехмерный программный комплекс для автоматизации конструкторских работ промышленного предприятия. Разработчик – компания Dassault Systemes.

Черты системы, выгодно отличающие ее от других CAD-систем:

  • Продуманный интерфейс пользователя, ставший образцом для подражания
  • Обилие надстроек для решения узкоспециализированных задач
  • Ориентация как на конструкторскую, так и на технологическую подготовку производства
  • Библиотеки стандартных элементов
  • Распознавание и параметризация импортированной геометрии
  • Интеграция с системой SolidWorks PDM

SolidEdge

Система трехмерного моделирования машиностроительных изделий, которую разрабатывает Siemens PLM Software.

Среди преимуществ системы можно выделить:

  • Комбинацию технологий параметрического моделирования на основе конструктивных элементов и дерева построения с технологией прямого моделирования в рамках одной модели
  • Расчетные среды, включая технологию генеративного дизайна
  • Поддержку ЕСКД при оформлении документации
  • Расширенные возможности проектирование литых деталей и оснастки для их изготовления
  • Встроенный модуль автоматизированного создания схем и диаграмм
  • Тесную интеграцию с Microsoft SharePoint и PLM-системой Teamcenter для совместной работы и управления данными

Компас-3D

Компас-3D – это система параметрического моделирования деталей и сборок, используемая в областях машиностроения, приборостроения и строительства. Разработчик – компания Аскон (Россия).

Преимущества системы Компас-3D:

  • Простой и понятный интерфейс
  • Использование трехмерного ядра собственной разработки (C3D)
  • Полная поддержка ГОСТ и ЕСКД при проектировании и оформлении документации
  • Большой набор надстроек для проектирования отдельных разделов проекта
  • Гибкий подход к оснащению рабочих мест проектировщиков, что позволяет сэкономить при покупке
  • Возможность интеграции с системой автоматизированного проектирования технологических процессов ВЕРТИКАЛЬ и другими системами единого комплекса.

T-FLEX

Отечественная САПР среднего уровня, построенная на основе лицензионного трехмерного ядра Parasolid. Разработчик системы – компания ТопСистемы (Россия).

Отличительные черты системы:

  • Мощнейшие инструменты параметризации деталей и сборок
  • Продвинутые средства моделирования
  • Простой механизм создания приложений без использования программирования
  • Интеграция с другими программами комплекса T-FLEX PLM
  • Инструменты расчета и оптимизации конструкций.

“Тяжелые” САПР

Тяжелые САПР предназначены для работы со сложными изделиями (большие сборки в авиастроении, кораблестроении и пр.) Функционально они делают все тоже самое, что и средние системы, но в них заложена совершенно другая архитектура и алгоритмы работы.

PTC Creo

Система 2D и 3D параметрического проектирования сложных изделий от компании PTC. САПР PTC Creo широко используется в самых разных областях проектирования.

Выгодные отличия системы от конкурирующих решений:

  • Эффективная работа с большими и очень большими сборками
  • Моделирование на основе истории и инструменты прямого моделирования
  • Работа со сложными поверхностями
  • Возможность масштабирования функциональности системы в зависимости от потребностей пользователя
  • Разные представления единой, централизованной модели, разрабатываемой в системе
  • Тесная интеграция с PLM-системой PTC Windchill.

NX

NX – флагманская система САПР производства компании Siemens PLM Software, которая используется для разработки сложных изделий, включающих элементы со сложной формой и плотной компоновкой большого количества составных частей.

Ключевые особенности NX:

  • Поддержка разных операционных систем, включая UNIX, Linux, Mac OS X и Windows
  • Одновременная работа большого числа пользователей в рамках одного проекта
  • Полнофункциональное решение для моделирования
  • Продвинутые инструменты промышленного дизайна (свободные формы, параметрические поверхности, динамический рендеринг)
  • Инструменты моделирования поведения мехатронных систем
  • Глубокая интеграция с PLM-системой Teamcenter.

CATIA

Система автоматизированного проектирования от компании Dassault Systemes, ориентированная на проектирование сложных комплексных изделий, в первую очередь, в области авиастроения и кораблестроения.

Отличительные особенности:

  • Стандарт “де факто” в авиастроении
  • Ориентация на работу с моделями сложных форм
  • Глубокая интеграция с расчетными и технологическими системами
  • Возможности для коллективной работы тысяч пользователей над одним проектом
  • Поддержка междисциплинарной разработки систем.

Облачные САПР

В последнее время активно начали развиваться “облачные“ САПР, которые работают в виртуальной вычислительной среде, а не на локальном компьютере. Доступ к этим САПР осуществляется либо через специальное приложение, либо через обычный браузер. Неоспоримое преимущество таких систем – возможность их использования на слабых компьютерах, так как вся работа происходит в “облаке”.

Облачные САПР активно развиваются, и если несколько лет назад их можно было отнести к легким САПР, то теперь они прочно обосновались в категории средних САПР.

Fusion 360

САПР Fusion 360 ориентирована на решение широкого круга задач, начиная от простого моделирования и заканчивая проведением сложных расчетов. Разработчик системы – компания Autodesk.

Особенности Fusion 360:

  • Продвинутый интерфейс пользователя
  • Сочетание разных методов моделирования
  • Продвинутые инструменты работы со сборками
  • Возможность работы в онлайн и оффлайн режимах (при наличии и отсутствии постоянного подключения к сети Интернет)
  • Доступная стоимость приобретения и содержания
  • Расчеты, оптимизация, визуализация моделей
  • Встроенная CAM-система
  • Возможности прямого вывода моделей на 3D-печать.

Onshape

Полностью “облачная” САПР Onshape разрабатывается компанией Onshape.

На что стоит обратить внимание при выборе Onshape:

  • Доступ к программе через браузер или мобильные приложения
  • Работа только в режиме онлайн
  • Узкая направленность на машиностроительное проектирование
  • Полный набор функций для моделирования изделий машиностроения
  • Контроль версий создаваемых проектов
  • Поддержка языка FeatureScript для создания собственных приложений на основе Onshape.

Заключение

В настоящее время на рынке присутствуют самые разные современные CAD системы, которые отличаются между собой как по функциональности, так и по стоимости. Выбрать подходящую систему автоматизированного проектирования среди многих CAD – непростая задача. При принятии решения необходимо ориентироваться на потребности предприятия, задачи, которые стоят перед пользователями, стоимость приобретения и содержания системы и многие другие факторы.

Как выбрать CAD-систему. Какие бывают CAD-системы

Когда у человека появляется необходимость освоить 3D моделирование и начать создавать трехмерные модели, то он невольно сталкивается с проблемой выбора программного обеспечения (ПО) для решения своих задач. На сегодняшний день на рынке существует огромный выбор ПО, отличающегося по своему функционалу. Оно может быть платным или бесплатным, требующим установки на компьютер или расположенным на серверах производителей и работающим непосредственно в окне браузера. В наше время каждый может использовать для построения 3D моделей свой смартфон или планшет. Существуют неплохие приложения для моделирования на android и ios. Все это разнообразие называется одной общей аббревиатурой САПР (системы автоматизированного проектирования). Ближайшей по смыслу английской аббревиатурой можно назвать CAD-systems (computer-aided design), но все же понятие CAD является лишь малым подпунктом такого определения как САПР.

Также следует упомянуть часто используемые английские аббревиатуры CAM-system (Computer-aided manufacturing, автоматизированная система подготовки управляющих программ для станков с ЧПУ) и CAE-system (Computer-aided engineering, автоматизированная система для проведения расчётов, анализа и симуляции физических процессов). Эти типы систем могут являться как самостоятельными программами (например CAM-система Power Mill или CAE-система Ansys) так и быть одним из модулей САПР (модуль SolidCAM в системе SolidWorks или Inventor).

Перед тем как мы начнем обсуждать существующие категории САПР, поговорим о трех основных способах моделирования. Базовые различия между ними обязательно нужно знать начинающему пользователю для правильного выбора ПО. Различают твердотельное, поверхностное и полигональное моделирование. Каждый из трех способов имеет свои преимущества и недостатки, лучше подходит для решения одних задач и хуже (а порой и вовсе не подходит) для решения других.

Твердотельное моделирование — это идеальный инструмент для создания параметрических моделей, где нам нужно контролировать размеры каждого элемента, иметь возможность легко их редактировать, определять зависимости между элементами, чтобы при изменении одного из них автоматически происходило изменение других. Весь инструментарий твердотельного моделирования сводится к различным способам вытягивания трехмерных элементов (по прямой, по кривой, по сечениям, тело вращения и т.д.), булевым операциям (сложение, вычитание и пересечение объектов) и построениям скруглений и фасок. Этим способом можно без проблем создавать модели относительно простой формы, которой обычно обладают детали из области машиностроения.

ПРИМЕРЫ ТВЕРДОТЕЛЬНОГО МОДЕЛИРОВАНИЯ

Поверхностное моделирование хорошо подходит для описания сложных криволинейных форм. С его помощью создаются модели различных бытовых приборов, изогнутых корпусов, кузовов, элементов зданий и т.д. Сложную форму изделия чаще всего невозможно описать одной поверхностью, поэтому конечные модели состоят из множества поверхностей. Важным аспектом поверхностного моделирования является возможность создания гладких поверхностей и качественного сопряжения их между собой. Поверхности могут сопрягаться с различным типом непрерывности (G1, G2, G3, G4). Непрерывность характеризует плавность перехода от одной поверхности к другой. Основная сфера применения этого способа моделирования — промышленный дизайн.

ПРИМЕРЫ ПОВЕРХНОСТНОГО МОДЕЛИРОВАНИЯ

Полигональное моделирование лучше всего подходит для создания моделей с очень высокой степенью детализации. Такие модели используются в мебельном производстве, ювелирном деле, киноиндустрии, игровой индустрии, сувенирной продукции, рекламе и т.д. К ним можно отнести сложные орнаменты, узоры, персонажей (людей, животных, монстров и т.д.), одежду и др. Например, средствами твердотельного или поверхностного моделирования будет невероятно сложно построить 3D модель человека, детализация которой позволит отобразить в ней все самые мелкие элементы, вплоть до морщин и пор на коже. Полигональное моделирование легко справится с этой задачей.

ПРИМЕРЫ ПОЛИГОНАЛЬНОГО МОДЕЛИРОВАНИЯ

Все эти три способа моделирования могут комбинироваться и дополнять друг друга. Многие САПР, в той или иной степени, позволяют это делать, но для полноценного использования всех преимуществ каждого способа многие специалисты используют несколько программных пакетов в своей работе. Важно помнить, что любая твердотельная модель может быть легко конвертирована в поверхностную или полигональную. Поверхностная модель также может быть конвертирована в твердотельную (при условии что она описывает замкнутый объем) или полигональную. А вот полигональная модель не может быть конвертирована в твердотельную или поверхностную, хотя это особенно востребовано в обратном инжиниринге. Для этой задачи имеется различное специализированное программное обеспечение, позволяющее воссоздавать поверхностные или твердотельные модели по полигональным, полученным, например, в результате 3d сканирования.

scan

Системы автоматизированного проектирования (САПР) подразделяются на несколько категорий в зависимости от своего функционала. Самой распространенной классификацией является их деление на системы нижнего, среднего и верхнего уровней. Часто еще говорят легкие, средние и тяжелые САПР. Проблема в том, что при упоминании такой классификации чаще всего называют только лишь машиностроительные системы, т.к. они наибольшим образом подходят под определение САПР. Мы же не обойдем стороной и остальные системы, которые используются в дизайне, архитектуре, стоматологии, киноиндустрии и т.д. В связи с этим, я отнесу все три вышеупомянутых подвида систем к первой категории САПР (машиностроительные САПР).

Итак, коротко о первой категории САПР:

Системы нижнего уровня предназначены для 2D-проектирования и черчения. В них, как правило, есть возможность создавать отдельные трехмерные модели, но нет полноценного инструментария для работы со сборочными единицами. К таким системам можно отнести AutoCAD, BricsCAD, VersaCAD.

Системы среднего уровня покрывают больший спектр задач. Наряду с созданием 3D моделей, сборочных единиц, чертежей и документооборота, в них можно проводить различные инженерные расчеты (прочностные, температурные, расчеты связанные с жидкостными и газовыми потоками и многое другое). Кроме того, системы среднего уровня могут обладать множеством встроенных модулей для решения специализированных задач — автоматизации проектирования электрических, гидравлических и прочих вспомогательных систем, автоматизации проектирования пресс-форм, работы с листовыми материалами и т.д. Часто в подобные системы интегрируется модуль подготовки управляющих программ для станков с ЧПУ (CAM-система). САПР среднего уровня пользуются наибольшим спросом на рынке т.к. решают подавляющее число инженерных задач. В качестве примера можно привести Inventor, SolidWorks, SolidEdge, Компас 3D, T-Flex.

Системы верхнего уровня охватывают самый внушительный спектр инженерных задач, включают встроенные подсистемы инженерного анализа (CAE) и подготовки управляющих программ для станков с ЧПУ и промышленных манипуляторов (CAM), подсистемы для обратного инжиниринга, аддитивного производства и многие другие специализированные средства разработки. С помощью тяжелых САПР можно создавать очень ресурсоемкие сборки, состоящие из десятков тысяч деталей (авиастроение, кораблестроение и др.). Эти САПР могут быть интегрированы с подсистемой управления инженерными данными (PDM — Product Data Management), способной охватить целое предприятие. Одной из целей PDM-систем является обеспечение возможности групповой работы над проектом, когда группа людей одновременно трудится над одним заданием и совместно использует необходимые для этого данные. Исходя из этого, подобные САПР наиболее громоздки, сложны в работе, имеют значительную стоимость и больше всего подходят для крупных предприятий. К системам высокого уровня относятся Siemens NX, CATIA от Dassaut Systemes , PTC Creo.

t1 t2

Как было сказано в начале статьи, существуют САПР, которые не требуют установки на компьютер («облачные» САПР), а работают прямо в окне браузера или через специальное приложение. Преимущество таких систем заключается в том, что их можно использовать даже на слабых компьютерах, так как вся вычислительная нагрузка ложится на сервера, где базируется эта система. Кроме того, все данные при работе в таких системах можно хранить в «облаке» и иметь доступ к ним в любое время и с любого устройства (ПК, телефон, планшет). В качестве примера можно привести такие системы как Autodesk Fusion 360 (бесплатна для студентов) и Onshape. По уровню функционала их можно отнести к средним САПР.

Наибольший интерес для пользователей чаще всего представляют САПР среднего и верхнего уровня. Подобным системам присуща высокая степень параметризации. Сама концепция моделирования в них предполагает создание эскизов в строго определенных плоскостях. Элементы эскизов при этом имеют различные ограничения и взаимосвязи между собой, размеры определяют конечный вид эскиза, а изменение размеров ведет к его автоматическому перестроению. Эскизы, в свою очередь, служат основой для построения трехмерных элементов. Вся история построений сохраняется в навигаторе операций и всегда находится на виду у пользователя, что позволяет ему быстро вносить какие-либо изменения на любом этапе моделирования и вся модель будет автоматически перестраиваться в соответствии с этими изменениями.

Основные способы моделирования для этой категории систем — твердотельный (на первом месте) и поверхностный. Имеются инструменты для работы с полигональными моделями, но они достаточно ограничены.

Вторая категория САПР:

Ко второй категории относятся системы для промышленного дизайна. Преимущественным способом работы в них является поверхностное моделирование . Эти системы не имеют такой высокой степени параметризации, как вышеописанные САПР. Работа происходит в более свободном стиле, без задания различных ограничений, взаимосвязей и образмеривания (хотя в некоторых случаях эта возможность имеется). Размеры для всех элементов определяются непосредственно при построении каждого из них, а не после наброски общего вида эскиза. Что касается самих эскизов, то их создание происходит относительно активной системы координат без жесткой привязки к какой-либо конкретной плоскости. История построений не сохраняется. Эти системы менее громоздки и более удобны для решения задач, связанных с промышленным дизайном (бытовые приборы, элементы наземного, водного и воздушного транспорта, мебель, интерьеры, посуда, архитектура и т.д.). В качестве примера подобных систем можно привести Autodesk Alias, Rhinoceros 3D, PowerShape, IcemSurf, SolidThinking и др.

Третья категория САПР:

К третьей категории САПР я отнесу программное обеспечение, направленное на решение узкоспециализированных задач. Среди прочих можно отметить такие специализированные системы как Autodesk Crispin ShoeMaker — для проектировщиков обуви (в настоящее время программа не поддерживается разработчиками). Autodesk Revit, ArchiCAD — для архитекторов. DentalCAD от EGS и другие — для стоматологов. Matrix и MatrixGold от Gemvision (на базе Rhinoceros), RhinoGold — для ювелиров и т.д.

Четвертая категория САПР:

Четвертая категория — это системы для художественного моделирования, анимации, визуализации.

Если немного более подробно изучить определения САПР и CAD, то мы обнаружим, что названные мной далее системы не относят к этим понятиям, делая упор на такие возможности САПР, как создание чертежей, ведение проектной документации, проведение инженерных расчетов, создание управляющих программ для станков с ЧПУ и т.д. В ГОСТе, определяющем понятие САПР, говорится: «САПР — организационно-техническая система, входящая в структуру проектной организации и осуществляющая проектирование при помощи комплекса средств автоматизированного проектирования (КСАП)». При подробном знакомстве с этим ГОСТом мы узнаем, что в САПР входит много разных компонентов и это не только программное обеспечение. Суть в том, что даже на уровне программного обеспечения для покрытия всего перечня решаемых задач, в большинстве случаев требуется использование нескольких программных пакетов (за исключением тяжелых САПР). И только в комплексе все это можно будет назвать полноценной системой автоматизированного проектирования. Ничто не мешает нам дополнить тот же инженерный инструментарий программами из этой категории и использовать их в качестве инструмента в общем комплексе средств, так как решение некоторых инженерных задач в них можно выполнять намного эффективней, чем в классических САПР.

Основным инструментом систем четвертой категории является полигональное моделирование, которое проще всего позволяет манипулировать формой изделия. В этом случае модели состоят из множества полигонов и чем более мелкие детали мы хотим отобразить в модели, тем больше этих полигонов нам нужно.

scan

В отличии от САПР нижнего, среднего и верхнего уровней, в этих системах нам не требуется так явно контролировать размеры всех элементов и зависимости между ними. Обычно достаточно определить габаритные размеры и пропорции модели. Параметризация в таких программах проявляется немного по-другому и об этом мы упомянем ниже. Системами этой категории являются Autodesk 3ds Max, Autodesk Maya, Cinema 4d, Modo, Blender (бесплатное ПО) и т.д. Сюда же можно отнести программное обеспечение, специализирующееся на цифровом скульптинге (цифровой лепке) — ZBrush, 3D Coat, Mudbox, Sculptris (бесплатное ПО), SculptGL (работает в окне браузера, можно попробовать прямо сейчас).

Многие системы этой категории имеют возможность создания моделей и анимации на основе симуляции физических процессов (воздействие силы тяжести, ветра, симуляция разрушений, движения частиц и т.д.). В качестве интересного примера на эту тему можно привести программы для моделирования одежды, где модели являются результатом одного из видов такой симуляции — Marvelous Designer, CLO3D, Optitex PDS и т.д.

МОДЕЛИРОВАНИЕ ОДЕЖДЫ В MARVELOUS DESIGNER

Возможности некоторых видов симуляций могут стать хорошим инструментом для решения научных задач. Смотреть пример.

scan
ДВИЖЕНИЕ ЭЛЕКТРОНОВ В МАГНЕТРОНЕ

Есть во всей этой категории программ и большие возможности для параметризации, которая появилась в них благодаря внедрению визуальной среды программирования. В этой среде мы имеем возможность создавать объекты, присваивать им различные свойства, связывать эти объекты и свойства между собой и воздействовать на них в режиме реального времени, посредством так называемых нод. Говоря простым языком, нода — это блок, который хранит в себе какие-либо данные (объекты, свойства, значения) или обрабатывает поступающие данные по определенному алгоритму. Нода может иметь один или несколько входов для поступления данных и выходы для их передачи. Если произвести изменение в какой-либо ноде (указать другое значение или подставить другой объект), то вся цепочка блоков (нод) выполнится с учетом этих изменений. Визуальная среда программирования может содержать в себе сотни готовых нод, которые покрывают весь необходимый функционал. При должных навыках, пользователь имеет возможность дополнять этот функционал своими собственными нодами. Использование визуальной среды программирования еще называют процедурным моделированием. Наиболее ярким представителем системы с такими возможностями, на мой взгляд, является Houdini FX. Для того, чтобы лучше понять и осознать силу такого способа параметризации, достаточно посмотреть видеоролик. На основе процедурной модели, созданной в этом ролике, можно в считанные секунды получать любое количество вариаций декоративной панели и развертку ее послойных элементов для дальнейшего изготовления на фрезерном или лазерном станке с ЧПУ.

t1 t2

Следует отметить что такая среда визуального программирования существует и в других категориях САПР. Что касается ПО для промышленного дизайна (вторая категория), то там имеется очень популярный плагин Grasshopper для программы Rhinoceros 3D. Раньше Grasshopper нужно было скачивать и устанавливать для Rhinoceros 3D отдельно, но эта среда визуального программирования настолько сильно увеличивает возможности программы, что начиная с 6-ой версии Rhino, плагин решили включить в базовый набор программы.

В категории специализированных САПР можно отметить среду визуального программирования Dynamo Studio для системы Revit от Autodesk, а в САПР верхнего уровня (первая категория) это 3D Generative Innovator от Dassault Systemes (работает в окне браузера).

Подводя итоги, можно сказать, что выбор программного обеспечения огромен. Прогресс не стоит на месте и с каждым годом мы можем наблюдать в САПР появление новых инструментов, открывающих дополнительные возможности. Если Вы начинающий пользователь, то надеюсь, что после прочтения этой статьи Вы сможете определиться хотя бы с тем, на какую категорию САПР Вам нужно обратить свое внимание. В статье обозначены все самые популярные программы, а их названия в тексте являются ссылками на официальные сайты разработчиков. На сайтах Вы можете более подробно ознакомиться с соответствующей программой, найти какие-либо обучающие материалы от разработчиков, узнать является ли программа платной или бесплатной и т.д.

С наилучшими пожеланиями!

Автор: Дмитрий Головин &nbsp &nbsp &nbsp &nbsp &nbsp &nbsp &nbsp &nbsp &nbsp &nbsp &nbsp &nbsp Наверх

Описание систем CAD и CAM.

Методы программирования.

Для станков с ЧПУ имеются три метода программирования обработки, такие как ручное программирование, программирование на пульте УЧПУ и программирование с помощью CAD/CAM системы.

Ручное программирование это достаточно утомительная работа. Но, тем не менее, технологи-программисты должны хорошо понимать технику ручного программирования, несмотря на то, как они работают. В настоящее время еще существуют предприятия, где используют метод ручного программирования. На самом деле, если у предприятия есть несколько станков с ЧПУ, а производимые детали несложные, то знающий программист сможет работать и, не имея средств автоматизации своего труда.

Метод программирования на пульте УЧПУ стал особо популярным только в последние годы. Связано это с увеличением их возможностей, улучшением интерфейса, ну и конечно техническое развитие систем ЧПУ оказало свое влияние. В данном методе, применяя клавиатуру и дисплей, программы пишутся и устанавливаются на самой стойке ЧПУ. Нынешние системы ЧПУ на самом деле дают возможность эффективно работать. Диалоговый язык программирования, который имеется у некоторых систем ЧПУ, существенно облегчает процедуру разработки УП и делает работу с ЧПУ удобной для оператора.

Программирование при помощи CAD/CAM системы дает возможность продвинуть процедуру создания программ обработки на уровень выше. Технолог-программист, используя СAD/CAM систему, освобождается от трудоемких математических расчетов и приобретает набор инструментов, который существенно увеличивает скорость разработки УП.

 

Определение CAD и САМ

В настоящее время, чтобы достичь успеха на рынке, промышленному предприятию необходимо работать над снижением себестоимости, сокращением срока выпуска и повышением качества продукции. Развитие компьютерных и информационных технологий послужило причиной создания CAD/CAM/CAE систем, которые в свою очередь, стали эффективными средствами решения таких задач.

CAD системы (computer-aided design — компьютерная поддержка проектирования) — это программное обеспечение, автоматизирующие работу инженера-конструктора и позволяющее решать задачи проектирования изделий и оформления технической документации с помощью компьютера.

Под САМ системами (computer-aided manufacturing — компьютерная поддержка изготовления) понимают такие системы, которые автоматизируют расчеты траекторий движения инструмента для обработки на станках с ЧПУ, и обеспечивают выдачу УП при помощи компьютера.

САЕ системы (computer-aided engineering — компьютерная поддержка инженерных расчетов) разработаны для решения разнообразных инженерных задач таких как, расчет гидравлических систем и механизмов, анализ тепловых процессов, расчет конструктивной прочности.

Продвижение CAD/CAM/CAE систем длится уже много десятков лет. В течение этого времени произошло некоторое деление, а скорее ранжирование систем на уровни: верхний, средний и нижний. Системы нижнего уровня очень доступны для изучения, но обладают значительно ограниченными функциями. Системы среднего уровня являются золотой серединой. Они предоставляют пользователю все необходимые средства для решения большей части задач, и при этом такие системы просты в изучении и работе. Системы верхнего уровня имеют огромное количество функций и возможностей, но при этом с ними тяжело работать.

 

Алгоритм работы с CAD/CAM системой.

1 этап. В CAD системе разрабатывается 3D модель детали или ее электронный чертеж. На рисунке представлена трехмерная модель детали с карманом сложной формы.

Трехмерная модель детали с карманом сложной формы

2 этап. 3D модель детали или ее электронный чертеж импортируется в САМ систему. Технолог-программист определяет поверхности и геометрические элементы, необходимые для обработки, делает выбор стратегии обработки, режущего инструмента и задает режим резания. Система вычисляет траектории перемещений инструмента.
3 этап. В САМ системе проводится визуальная про¬верка возникших траекторий. Программист имеет возможность достаточно легко исправить ошибки, которые могут обнаружиться на этом этапе, просто заново вернувшись к предыдущему.

Трехмерная модель детали с карманом сложной формы

4 этап.  Завершающим продуктом САМ системы предстает код УП. Такой код создается с помощью постпроцессора, который в свою очередь подгоняет УП под характеристики определенного станка и системы ЧПУ.

Трехмерная модель детали с карманом сложной формы

 

На нашем сайте вы можете выбрать подходящее программное обеспечение для автоматизации составления карт раскроя и подготовки управляющих программ для станков плазменной резки с ЧПУ.

Система автоматизированного проектирования (САПР). Кто кого? / Хабр


Идея родилась в моей голове от нашей бедности наших потребностей. Для тех, кто решил освоить какой-нибудь САПР, казалось бы, выбор должен быть всегда очевиден — это должен быть тот же САПР, что используется на предприятии, где работаешь, или же хочешь работать. Причины, по которой трудно сделать выбор могут быть разными, к примеру – у всех ленивых возникнет вопрос: «А что освоить легче?» или «Пойдет ли он на моем компьютере, если я хочу сделать нечто и в определённом количестве?». На выбор может так же повлиять наличие в программе нужных функций и, как это не странно прозвучит, цена. На эти и возможно некоторые другие вопросы ответы под катом.
ФОТО!!!

Виновники торжества:

Безусловно, САПР систем куда больше, но нам не хватило бы ни времени, ни сил на то, чтобы все их вам представить. Встречайте избранных.

Кратко о каждом. Плюсы и минусы:

Autodesk AutoCAD – один из самых распространенный CAD систем, помимо просто версии под названием Autodesk AutoCAD есть рад специализированных, таких как: AutoCAD для Mac, AutoCAD Architecture, AutoCAD Civil 3D, AutoCAD Electrical, AutoCAD LT, AutoCAD Map 3D, AutoCAD Mechanical, AutoCAD MEP, AutoCAD Plant 3D, AutoCAD P&ID, AutoCAD Raster Design, AutoCAD Revit Architecture Suite, AutoCAD Revit MEP Suite, AutoCAD Revit Structure Suite, AutoCAD Structural Detailing, AutoCAD Utility Design. Старые версии не сильно требовательны к железу, но начиная с 2010 версии работать на компьютере года 2006-го будет несколько затруднительно. Так же замечено, что AutoCAD 2010-2012 заведомо медленнее работает на интегрированных чипах Intel, в чем мы впоследствии убедимся, причем как в 3D, так и в 2D. Спасает эту ситуацию даже самый слабый GPU, который минимально соответствует требованиям AutoCAD, к примеру на чипе NVidia 200 Series.

Autodesk Inventor – САПР ориентированный большей частью на машиностроение, причем 2D часть программы развита настолько плохо, что оставляет желать лучшего. Практически весь набор дополнительных утилит представлен только в 3D части программы, в то время как в 2D нам остается довольствоваться только ассоциативными видами и минимальным набором для черчения. Недостаток в 2D полностью компенсирует AutoCAD Mechanical, ориентированный в свою очередь на оформление чертежей. Требования к железу у Inventor-а одновременно и небольшие, и в то же время достаточно высоки. Все зависит от того, что вы хотите «напроектировать». Как обстоят дела с версиями ниже 2010 сказать не могу но, как и в случаи с AutoCAD, компьютер нужен посерьезнее.

DSS SolidWorks – очень неплохая система, имеет достаточной понятный интерфейс, ничего из ряда вот выходящего я в ней не нахожу, но не могу отметить способность данной программы распознавать дерево построения сторонних CAD систем, а так же расстроить любителей халявы, пиратская версия встает кривовато. Делайте выводы.

АСКОН КОМПАС 3D – САПР, популярный, наверное, только в России. Основным полюсом у него будет – изначально русский интерфейс (хотя предыдущие системы этим не страдают), и очень обширная библиотека стандарта ГОСТ. Если в случаи с AutoCAD, при не удовлетворительной производительности на старом компьютере есть возможность поставить более старую версию, то в случаи с КОМПАСом — это будет не целесообразно, т.к. системные требования, начиная с 5-ой версии не сильно менялись. Также преимуществом является возможность сохранять работы в старой версии, т.к. большинство систем, благодаря своеобразной политике компании, такой функции лишены.

Подопытные кролики Тестируемые машины:







Проводимый тест:

В общем и целом ничего сложного.
Все настройки программ касательно графики будут стоять на качество отрисовки, но с минимум визуализации (в последствии некоторые проблемы мы постараемся решить и покажем как).
Задачу мы поставим нашим подопытным достаточно простую, с точки зрения реализации – массив из пружинок.

Постепенно увеличивая массив, можно будет увидеть, как живет программа при разной нагрузке. Отметим, что пружина, сама по себе один из самых сложный примитивов, если ее можно таковым назвать, следовательно, результаты будут даны с запасом.

Перед тестом хочу немного остановиться и рассказать вкратце, что из себя представляют тестируемые машины, для тех, кто не сильно разбирается в комплектующих и в терминологии вообще.
Разделяя компьютеры на рабочие станции и домашние подразумевается, что набор комплектующих в первых будет иметь несколько специфические параметры, названия и цену (как правило, более высокую). Рабочие станции, в свою очередь, тоже можно разделить на достаточно большое дерево, ибо для каждого типа работы нужно что-то свое, рассматривать в этой статье мы их не будем и выделим только представителей, которых называют графическими станциями. Что же отличает эти графические станции от обычных компьютеров? Ответ очень простой, в большинстве случаев это только наличие профессионального графического адаптера. В принципе из любого мощного игрового компьютера можно сделать графическую станцию просто поменяв видеокарту, но есть одно «но». Графические станции – это инструмент, на котором выполняются задачи, в частном случаи это инженерные, ответственные, сложные, достаточно трудоемкие (и как следствие высоко оплачиваемые) и этот инструмент должен удовлетворять пользователя не только по скорости работы, но и по надежности и своеобразной устойчивости к сбоям, и когда производитель выпускает комплектующие, предназначенные для профессиональной работы, он просит за них соответствующую цену, поэтому, для удовлетворяющей вас работы, просто смены видеокарты на профессиональную, может быть недостаточным.

Профессиональная графика на сегодняшний день для САПР систем представлена 3-мя компаниями:

  • NVidia (серия Quadro и Quadro FX)
  • ATI(AMD) (серия FirePro)
  • Intel (интегрированная графика в процессорах семейства Xeon E3, E7)
Производители от души «распиарили» свои продукты (все это читайте на официальных сайтах), но на деле раскрывается страшная истина. Те из вас, кто достаточно любопытен, наверняка заметили, что вышеупомянутые компании в профессиональной графике используют те же графические чипы, что и в игровых и бюджетных видеокартах, а деньги (причем не малые) просят с нас в большей части только за более качественное изготовление и оптимизацию программной части, т.е. драйверов. Но, как это ни прискорбно, для повышения производительности придется купить, то, что предлагают, а на сколько это целесообразно, каждый решит для себя сам.
По поводу ноутбуков, у нас будут представлены по одному представителю от бизнес и домашней серии.

И так, поехали:

Xeon
Показал вполне достойные результаты, последний тест выполнил с упрощением, смог задействовать два потока в нагрузке процессора, а вот нагрузка видеокарты была реализована только примерно на 50 процентов. В тонированно-каскадном тесте показал результат лучше, чем остальные системы.
Для выполнения теста понадобилось 747 Mb RAM
Использовано 2 потока
Нагрузка на GPU 50%

FX580
Как это ни странно, результаты не намного ниже, чем у предыдущей машины, однако, стоит отметить, что, если нагрузка на процессор была аналогичная, то видеокарта тут выложилась по полной. Также очень необычный «жор» в оперативной памяти – 2390 метров.
Для выполнения теста понадобилось 2390 Mb RAM
Использовано 2 потока
Нагрузка на GPU 100%

i7 Intel HD
На удивление результаты первых 4-х тестов аналогичны, как и на “FX580”, однако тест 50 на 50 был проведен с упрощением, равно как и последний.
Для выполнения теста понадобилось 624 Mb RAM
Использовано 2 потока

GTX460
Несмотря на заявления производителей и то, что процессор не i7, а i5 и предыдущего поколения, результат выше, чем у «второго» и не многим меньше «первого». Предположительно будет меньше стабильность работы, но в целом результат достаточно удивительный.
Для выполнения теста понадобилось 652 Mb RAM
Использовано 2 потока
Нагрузка на GPU 50%

DualCore
Последние 2 теста – провалены. Система зависла и построить массив не смогла. Мною было честно дано на построение 30 минут, но увы, результата я так и не дождался. Результаты остальных тестов значительно ниже. И вообще вывод – компьютер не пригоден для работы в CAD системах, т.ч. ссылаться на этот тест в сравнениях не будем.
Для выполнения теста понадобилось 358 Mb RAM
Использован 1 поток

ATI
Провалены последние 2 теста, система не смогла построить массив. Результат остальных – ниже, и удовлетворительной работы на больших сборках ждать от него не приходится. Нагрузка на карту была 100 % на протяжении всего теста.
Для выполнения теста понадобилось 301 Mb RAM
Использован 1 поток
Нагрузка на GPU 100%

i5
Практически идентичные результаты с третьей машиной (i7 Intel HD)
Для выполнения теста понадобилось 598 Mb RAM
Использован 1 поток

Xeon
Производительность на уровне с Inventor-ом, при этом нагрузка на систему была все 25%, как для видеокарты, так и для процессора (один поток).
Для выполнения теста понадобилось 412 Mb RAM
Использован 1 поток
Нагрузка на GPU 25%

FX580
Для выполнения теста понадобилось 434 Mb RAM
Использован 1 поток
Нагрузка на GPU <75%

i7 Intel HD
Выдал результаты ниже, но не заметные для восприятия.
Для выполнения теста понадобилось 715 Mb RAM
Использован 1 поток

GTX460
Для выполнения теста понадобилось 517 Mb RAM
Использован 1 потока
Нагрузка на GPU 25%

DualCore
Для выполнения теста понадобилось 290 Mb RAM
Использовано 2 потока (сомнительно)

ATI
Хоть не смог построить только самый последний тест, тесты 50 на 50 и 100 на 100 – выполнены с упрощением, остальные тесты показали производительность, на уровне с остальными машинами (за исключением DualCore)
Для выполнения теста понадобилось 388 Mb RAM
Использован 1 поток
Нагрузка на GPU 50%

i5
Для выполнения теста понадобилось 526 Mb RAM
Использован 2 потока (сомнительно)

Xeon
Как и AutoCAD, смог нагрузить только один поток. Средняя нагрузка на видеокарту – 50 процентов, как и предыдущие системы – провалил тест 100 на 100, и практически провалил тест 50 на 50.
Для выполнения теста понадобилось 196 Mb RAM
Использован 1 поток
Нагрузка на GPU 50%

FX580
Выдал практически идентичную производительность. Нагрузка на видеокарту тоже возросла.
Для выполнения теста понадобилось 177 Mb RAM
Использован 1 поток
Нагрузка на GPU 100%

i7 Intel HD
Показал аналогичный результат, как и на всех предыдущих машинах, такое ощущение, что ему видеокарта вообще не нужна.
Для выполнения теста понадобилось 268 Mb RAM
Использован 1 поток

GTX460
… без комментариев.
Для выполнения теста понадобилось 168 Mb RAM
Использован 1 поток
Нагрузка на GPU <75%

DualCore
Для выполнения теста понадобилось 98 Mb RAM
Использован 1 поток

ATI
Провален тест 50 на 50 и 100 на 100, в остальном – как обычно.
Для выполнения теста понадобилось 186 Mb RAM
Использован 1 поток
Нагрузка на GPU <50%

i5
Провален тест 50 на 50 и 100 на 100.
Для выполнения теста понадобилось 132 Mb RAM
Использовано 1 поток

Xeon
Оказался самым прожорливым, хоть как и 2 предыдущих системы, использовал ресурсы только одного потока, задействовал почти 100% видеокарты, показал сравнительно более лучшие результаты в тесте с тонировкой без каркаса.
Для выполнения теста понадобилось 323 Mb RAM
Использован 1 поток
Нагрузка на GPU 100%

FX580
Выдал результаты ниже почти в 2 раза.
Для выполнения теста понадобилось 279 Mb RAM
Использован 1 поток
Нагрузка на GPU 100%

ATI
Наличие дискретной карты дало свои результаты, но удовлетворительной работы в сборках более 100 деталей ждать не приходится.
Для выполнения теста понадобилось 261 Mb RAM
Использован 1 поток
Нагрузка на GPU 100%

Вывод по сравнению CAD систем:

Inventor: может использовать многозадачность, что беccпорно плюс, требователен к оперативной памяти, во всяком случаи задействовал ее больше чем все остальные, показал неплохую производительность на интегрированных видеокартах, но задействовал всего половину ресурсов от Quadro 4000. (есть предположение, что на Quadro 2000 производительность будет аналогичная, так же, есть предположение, что на игровых картах Radeon производительность будет больше, чем у аналогов Nvidia)

AutoCAD: продемонстрировал весьма достойную производительность, однако ресурсов задействовал меньше, из этого можно сделать вывод, что конфигурация выше второй машины (FX580) особого смысла не имеет.

КОМПАС 3D: показал одинаковую производительность на тестируемых стационарных машинах, прирост производительности практически минимальный, т.ч. для работы будет достаточно Intel HD 3000, но покупка профессиональной графики выше Quadro 600 будет не оправдана. Ноутбуки показали вполне сравнимый результат со стационарными машинами, хотя тест с каскадной отрисовкой 50 на 50 был не удовлетворительным.
В общем и целом для КОМПАСа желательно наличие дискретной графики, но при покупке нового компьютера с интегрированной HD 3000, стоит задуматься.

SolidWorks: пожалуй самый требовательный CAD к графической части, аппаратного ускорения на интегрированных картах он не дал, а значит дискретная графика обязательна для тех, кто будет работать со сборками даже в 100 деталей (возможно это исправлено в 2012 версии). На первой машине результат вполне достойный, с тестом 100 на 100 он справился лучше остальных, но на остальных машинах результат напоминает то, что показал КОМПАС.

P.S.:

Итак, если у вас уже есть достаточно мощная машина, даже игровая, смело выбирайте себе любую CAD-систему для ее изучения. Наличие профессиональной графики дает прирост, но смысл ее приобретать если вы не уверены, что будете профессионально работать, пожалуй не стоит.

Если компьютер старый, но все же мощнее, нашего «позорника» (DualCore), то изучить работу тоже можно во всех системах, но работать с большими сборками (больше 100 деталей) даже при наличии профессиональной графики, будет затруднительно.

К ноутбукам требования серьезнее, т.к. сделать замену комплектующих там сложнее, но в целом все примерно тоже самое.

Для SolidWorks наличие дискретной графики обязательно!

технология КАД КАМ, достоинства и недостатки

Сегодня в стоматологии широко используется система зубного протезирования, называемая CAD/CAM. Она расшифровывается как Computer Aided Design Computer Aided Manufacture — дизайн с помощью компьютера и производство с помощью компьютера. Название этой системы говорит о том, что для изготовления зубных протезов на всех этапах применяются компьютерные технологии.

В чём заключается технология

Главное достоинство системы CAD/CAM в стоматологии заключается в том, что изготавливаемые виды протезов имеют высокую точность по сравнению с обычной методикой протезирования. Использование компьютера также обуславливает быстроту изготовления и высокое удобство изделия для пациента.

Эта методика предполагает наличие следующих инструментов:

  • внутриротовая камера;
  • непосредственно компьютер;
  • фрезерный станок.

После подбора требуемых элементов можно переходить к созданию протезов, что включает в себя несколько этапов:

  1. Стоматолог-ортопед подготавливает зубы к протезированию. Используя бормашину, он стачивает часть эмали и дентина с зуба — это необходимо для создания места для будущего протеза. Этот этап ничем не отличается от обычной ортопедической подготовки.
  2. Врач снимает с зубных рядов пациента виртуальный оттиск, используя внутриротовую камеру. Ее использование имеет огромное преимущество для протезирования людей с повышенным рвотным рефлексом, для которых снятие обычных оттисков слепочной массой на ложках является тяжелым, а иногда и неразрешимым испытанием.
  3. В конце приёма, подготовленные зубы покрывают защитным лаком или искусственными коронками. Это делается для предупреждения болезненных ощущений и повышенной чувствительности.
изготовление слепкаизготовление слепка

Снятие слепка

Дальнейший процесс создания протеза происходит без участия пациента и проводится на компьютере или ноутбуке, на котором установлена программа CAD/CAM:

  1. Информация с интраоральной камеры передается на компьютерный носитель.
  2. Используя специальную программу, врач создает виртуальный трехмерный эскиз будущего протеза. В качестве эталона для моделируемых зубов служат зубы пациента, расположенные симметрично с другой стороны челюсти. Если же таковые отсутствуют, программа сама подбирает оптимальный результат. Преимуществом является то, что можно подобрать несколько различных вариантов (форма, наклон зубов), скорректировать и обсудить их с пациентом. Длительность этого этапа может варьировать от нескольких минут до 1−2 часов, в зависимости от сложности исходной ситуации.
  3. После определения окончательного варианта его 3D эскиз сохраняется. Информация поступает на фрезерный станок, на котором происходит изготовление каркаса. В качестве материала может использоваться кобальто-хромовый сплав или диоксид циркония. Блок из металла обрабатывается специальными фрезами в заданной компьютером последовательности, и получается каркас будущего протеза. Затем производится его шлифовка и полировка. Процесс выточки длится примерно 10−15 минут.
  4. Для повышения эстетического эффекта металлическая часть покрывается керамической массой в специальной печи.
  5. Готовый протез передается в стоматологический кабинет и примеряется пациентом. После примерки производится фиксация искусственных зубов на челюсти.

Преимущества и недостатки системы

Любая технология изготовления зубочелюстных протезов имеет как свои плюсы, так и минусы. Система КАД/КАМ в стоматологии не исключение, хотя, безусловно, она имеет больше положительных моментов.

Преимущества протезов, изготовленных по этой технологии:

  1. Они имеют исключительную точность. Обычная методика предусматривает снятие оттисков ортопедом, отливку из гипса челюстной модели зубным техником, ручное изготовление каркаса и покрытие его керамикой. Во время всех этих этапов неизбежно происходят незначительные погрешности (не зависящие от квалификации специалистов), которые в сумме приводят к неточности готового протеза и возможному дискомфорту при его ношении. Система КАД/КАМ сводит к нулю вероятность погрешности и неудобства будущей конструкции.
  2. Они не причиняют дискомфорта, не натирают десну, не вызывают болезненных ощущений. Они отличаются высокой прочностью и долговечностью, так как исключительная прочность не вызывает преждевременной перегрузки протеза и снижает вероятность поломки.
  3. Время изготовления конструкции с использованием компьютерных технологий значительно меньше, чем по классической методике. В среднем пациент получает готовую конструкцию за несколько часов, в то время как обычный процесс создания протезов, с применением слепков и работой зубного техника, длится около 5−7 дней. Поэтому система CAD/CAM незаменима в экстренных случаях, когда необходимо срочно восстановить зубной ряд (например, перед важным событием).
  4. Пациент может заранее увидеть на экране компьютера свой будущий протез, при необходимости обсудить со стоматологом возможные варианты и скорректировать конечный результат. Это значительно повышает эстетическую удовлетворенность как у пациента от полученного протеза, так и у врача от качественно выполненной работы.
  5. Технология CAD/CAM в стоматологии позволяет помочь людям даже с самыми тяжелыми клиническими случаями. Например, необходимость препарирования большого количества зубов при неправильном прикусе имеет сложность при изготовлении протеза по классическому варианту, так как велика вероятность сильной погрешности. А вот компьютерное сканирование позволит точно рассчитывать угол наклона каждого зуба и программировать идеальную для каждого случая конструкцию.
  6. Технологии КАД/КАМ позволяют изготовить протез из любого вида материала — сплавы из кобальта и хрома, диоксида циркония, керамики, композитного материала. Компьютер имеет несколько программ для работы с каждым из этих веществ с получением высокоэстетичного конечного продукта.

протез кад кам на экране компьютерапротез кад кам на экране компьютера

Единственным, но значительным минусом протезов, изготовленных по системе КАД/КАМ, является их высокая стоимость. Использование компьютерного оборудования при протезировании увеличивает цену в среднем в 2,5−3 раза.

Виды изготавливаемых протезов

Система КАД/КАМ в стоматологии дает возможность изготовить почти все виды зубного протезирования. В их число входят следующие:

  1. Металлокерамические коронки и мостовидные импланты. Это самый распространенный вид замещения дефектов челюстей. Недостаток традиционного протезирования в том, что оно происходит в несколько этапов, занимая время и заставляя пациента ждать. Используя эту систему, можно сократить срок изготовления металлокерамики с недели до суток. Сначала на компьютере моделируется каркас будущего протеза, затем он покрывается керамической массой по обычной технологии.
  2. Каркасы бюгельных протезов. Сложность их изготовления заключается в том, что они часто имеют очень сложную конструкцию, которую тяжело изготовить в зуботехнической лаборатории. Часто в процессе литья из металла возникают деформации формы конструкции, которые отрицательно сказываются на её качестве. Изготовление каркаса по системе КАД/КАМ обеспечивает его высокую точность даже в сложных клинических случаях.
  3. Телескопические коронки для бюгельных протезов. Они прикрепляются к металлическому каркасу и осуществляют крепление протеза на зубах в челюсти. Кад Кам помогает виртуально спланировать расположение коронок на каркасе протеза и изготовить их с максимальной точностью.
  4. Пломбы, вкладки и виниры из керамики или фарфора. Компьютер позволяет точно спрогнозировать вид реставрации, подобрать необходимый оттенок и цвет. После этапа планирования из керамического блока на фрезерном станке вытачивается изделие необходимой формы.
  5. Вкладки из сплава кобальто-хрома, диоксида циркония. Если вкладка предназначается для многокорневых зубов, с помощью КАД/КАМ можно спроектировать расположение штифтов в каждом канале, что улучшит её удержание в зубе.
  6. Абатменты для имплантатов из титана. Они представляют собой головку, одевающуюся на установленный в челюсть имплантат. В сложных клинических случаях, когда необходимо использовать для опоры мостовидного протеза несколько титановых стержней, КАД/КАМ поможет точно рассчитать расстояние между ними и изготовить для каждого имплантата индивидуальный абатмент.

Лучшие модели

Самой распространённой моделью этой системы является Dyamach — итальянский производитель, выпускающий фрезерные станки для открытых систем. В этом оборудовании допускается обработка любого вида материала — керамика, металл, пластмасса. В результате получается готовое изделие высокой степени точности.

Фрезерная установка этой фирмы хорошо справляется со сложными конструкциями благодаря высокой подвижности своей рабочей части. В состав входят фрезы различного размера (3,4,6 мм), позволяющие изготовить любой вид протеза. Оборудование работает с высокой скоростью, например, мелкие части и детали (культевые вкладки, абатменты) изготавливаются за 10−15 минут, каркасы мостовидных протезов — до 60 минут. Эта фирма отличается невысокими ценами в сочетании с высоким качеством продукции.

фрезерование конструкции в станкефрезерование конструкции в станке

Фрезерование конструкции в станке

Немецкие производители

Sirona Dental Systems — немецкий производитель экономкласса, доступен для всех видов стоматологических клиник и зуботехнических лабораторий. На фрезерных станках этой фирмы возможно изготовление многих элементов протеза за короткое время.

Wieland — немецкий производитель, выпускающий 2 вида фрезерных станков. Первая модель имеет компактные размеры и небольшой вес, подходит для изготовления несложных протезов, имеет невысокую стоимость. Вторая модель допускает создание протезов в непростых клинических ситуациях (телескопические и с опорой на имплантаты), но имеет более высокую цену.

Другие страны

Roland — японский производитель, предлагающий оборудование для открытых систем. Он также выпускает фрезерные установки для создания протезов из любых материалов. Изготовление единицы из сплава циркония на этом оборудовании занимает около получаса. Конечный результат имеет высокую точность.

Zirkonzahn — итальянский производитель, занимающийся выпуском элементов CAD/CAM для систем открытого типа. Он содержит внутриротовую камеру, компьютер, фрейзер, печь для спекания элементов, изготовленных из керамики. Продукция характеризуется низкой ценой, простотой компьютерной программой и возможностью обучения врачей работе с программой. Эта система идеально подходит для использования в больницах экономкласса из-за своей низкой цены.

Кадкам — система в стоматологии, которая придется по душе каждому благодаря высокому качеству протезов и доступной стоимости.

Статьи » Назначение и общая классификация CAD/CAM/CAE-систем

САПР (CAD System — Computer Aided Design System) — система, реализующая проектирование, в котором все проектные решения или их часть получают в результате вычисления и составления математических моделей на компьютере. Основная функция – выполнение автоматизированного проектирования на всех и отдельных стадиях проектирования объектов и их составных частей.

  • Цель применения САПР – это повышение эффективности работы инженеров, которая включает:
  • Снижение трудоемкости проектирования;
  • Сокращение сроков проектирования и уточнение стадии планирования;
  • Сокращение себестоимости проектирования и изготовления;
  • Повышение качества и технико-экономического уровня результатов проектирования;
  • Сокращение затрат на моделирование и испытания;
  • Уменьшение количества брака.

В настоящий момент выделяют три основные подгруппы САПР:

— машиностроительные САПР (MCAD — Mechanical Computer Aided Design). Под термином «САПР для машиностроения» в нашей стране обычно подразумеваются пакеты, выполняющие функции CAD/CAM/CAE/PDM, т.е. автоматизированного проектирования, подготовки производства и конструирования, а также управления инженерными данными.

— Архитектурно-строительные САПР (CAD/AEC — Architectural, Engineering, and Construction).

— САПР печатных плат (ECAD — Electronic CAD/EDA – Electronic Design Automation).

CAD – computer Aided DesignОбщий термин для обозначения всех аспектов проектирования с использованием средств вычислительной техники. Обычно охватывает создание геометрических моделей изделия. А также генерацию чертежных изделий и их сопровождений.

CAM – Computer Aided Manufacturing — Общий термин для обозначения системы автоматизированной подготовки производства, общий термин для обозначения ПС подготовки информации для станков с ЧПУ. Традиционно исходными данными для таких систем были геометрические модели деталей, полученных из систем CAD.

CAE – Computer Aided Engineering — Система автоматического анализа проекта. Общий термин для обозначения информационного обеспечения условий автоматизированного анализа проекта, имеет целью обнаружение ошибок (прочностные расчеты) или оптимизация производственных возможностей.

PDM – Product Data Management — Система управления производственной информацией. Инструментальное средство, которое помогает администраторам, инженерам, конструкторам управлять как данными так и процессами разработки изделия на современных производственных предприятиях или группе смежных предприятий.

САПР легкий вес

Эти САПР служат для выполнения почти всех работ с двумерными чертежами и имеют ограниченный набор функций по трехмерному моделированию. С помощью этих систем выполняются порядка 80% всех работ по проектированию, хотя имеющиеся ограничения делают их не всегда довольно удобными. Область их работы — создание чертежей отдельных деталей. Характерные представители таких САПР — AutoCAD, T-FlexCAD 2D.

AutoCad

Разработчик: Autodesk

Страна разработки: США

Самая популярная в мире среда автоматизированного проектирования, избранная многими разработчиками в качестве базовой графической платформы для создания машиностроительных, архитектурных, строительных, геодезических программ и систем инженерного анализа. AutoCad — лучшая 2D «чертилка».

КОМПАС

Разработчик: АСКОН

Страна разработки: Россия

Система КОМПАС-3D позволяет реализовать классический процесс трехмерного параметрического проектирования — от идеи к ассоциативной объемной модели, от модели к конструкторской документации.

Основные компоненты КОМПАС-3D — собственно система трехмерного твердотельного моделирования, универсальная система автоматизированного проектирования КОМПАС-График и модуль проектирования спецификаций. Все они легки в освоении, имеют русскоязычные интерфейс и справочную систему.

САПР средний вес

По своим возможностям они полностью охватывают САПР «легкого веса» плюс позволяют работать со сборками, и по некоторым параметрам они уже не уступают тяжелым САПР. А в удобстве работы даже превосходят. Обязательным условием является наличие интеграции с CAM программами. Это не просто программы, а программные комплексы, в частности Autodesk Mechanical Desktop, Intergraph, Solid Edge, T-Flex, Solid Works.

ADEM

Разработчик: Группа компаний ADEM

Страна разработки: РоссияADEM – программное обеспечение для промышленности и образованияОтечественная интегрированная CAD/CAM/CAPP система ADEM предназначена для автоматизации конструкторско-технологической подготовки производства.

В состав программного комплекса входят инструменты для автоматизации: проектирования, конструирования и моделирования изделий; оформления чертежно-конструкторской документации в соответствии с требованиями ЕСКД; проектирование техпроцессов и оформления технологической документации в соответствии с требованиями ЕСТД; программирования оборудования с ЧПУ; управления архивами и проектами.

T-Flex

Разработчик: Топ-Системы

Страна разработки: Россия

Топ Системы — разработчик программного комплекса T-FLEX СAD/CAM/CAE/CAPP/PDM.Компания «Топ Системы» предлагает полностью интегрированные программные решения T-FLEX CAD/CAM/CAE/CAPP/PDM для электронного документооборота (PDM), системы автоматизации проектирования (САПР), подготовки производства и управленческой деятельности на предприятии, подготовки программ для станков с ЧПУ.

Solid Works

Разработчик: SolidWorks Corp.

Страна разработки: СШАSolidWorks — мощное средство проектирования, базирующееся на передовых технологиях гибридного параметрического моделирования, интегрированных средствах электронного документооборота SWR-PDM/Workflow и широком спектре специализированных модулей. Разработчиком SolidWorks является SolidWorks Corp. (США), независимое подразделение холдинга Dassault Systemes (Франция) — мирового лидера в области высокотехнологичного программного обеспечения.Концептуальные идеи, положенные разработчиками в основу SolidWorks, и такие качества, как высокая производительность и надежность, интуитивно понятный интерфейс, русификация и поддержка ЕСКД, предопределяют успех внедрения SolidWorks на предприятиях отечественной промышленности.

САПР тяжелый вес

Эти системы применяются для решения наиболее трудоемких задач: моделирования поведения сложных механических систем в реальном масштабе времени, оптимизирующих расчетов с визуализацией результатов расчетов температурных полей и теплообмена и т.д. Обычно в состав системы входят: графические модули, модули для проведения расчетов, постпроцессоры для станков с ЧПУ.

Примерами «тяжелых» САПР могут служить такие продукты, как CATIA, CADDS 5, EMS, Pro/ENGINEER.

Catia

Разработчик: Dassault Systemes

Страна разработки: ФранцияCATIA V5 – CAD/CAM/CAE — система для описания изделия и его моделирования на разных этапах жизненного цикла. Разработана в 1998 году на основе нового ядра CNEXT, содержащего средства как для описания геометрии изделия, так и для описания процессов его создания, с возможностью сохранять и накапливать используемые при этом приемы и методы в виде корпоративных знаний. Идеи PLM заложены в самой основе системы, что позволяет исключительно быстро развивать и наращивать ее функциональность в желаемом направлении. В этом – ее основное отличие от программных продуктов других компаний-разработчиков.

Pro\Engineer

Разработчик: Parametric Technology Corporation (PTC)

Страна разработки: СШАПолнофункциональная САПР для разработки изделий любой сложности.Благодаря мощным возможностям автоматизации всех машиностроительных дисциплин, Pro/ENGINEER является общепризнанным 3D решением для моделирования и разработки конкурентоспособных коммерческих изделий. Интегрированные CAD/CAM/CAE решения Pro/ENGINEER позволяют вам проектировать быстрее, чем когда-либо, максимально способствуя появлению новых идей и повышению качества, что в конечном итоге приводит к созданию выдающихся изделий.

применение CAD/CAM систем в ортопедической стоматологии

Понятие CAD-системы расшифровывается как компьютерная поддержка проектирования (сomputer-aided design). Стоматологическая система предназначена:

  • для решения конструкторских задач, в том числе моделирования трехмерного дизайна;
  • оформления цифровой текстовой документации и контроля заказа.

Современные системы CAD в стоматологии, реализуют возможность изготовления всех видов зуботехнических конструкций.

CAM-системы нужны для проектирования процесса обработки изделий на станках с ЧПУ. Аббревиатура CAM расшифровывается как компьютерная поддержка производства (computer-aided manufacturing). В CAM-системе за основу проектирования берется трехмерная модель, полученная через CAD-систему.

Что такое CAD/CAM в ортопедической стоматологии?

Инновационные CAD/CAM-технологии в ортопедической стоматологии позволили производить протезы за одно посещение, без участия зубного техника. При этом изготовление изделий возможно прямо в присутствии пациента. Преимущество метода — в холодной обработке материалов или, иначе говоря, во фрезеровании. Такой способ более щадящий, он позволяет сохранять первоначальные свойства материала.

Идея автоматизированного производства стоматологических реставраций появилась в 1970 году. Воплотить в жизнь ее удалось лишь в 1983, внедрив CAD/CAM в стоматологию. Тогда на Международном конгрессе стоматологов продемонстрировали первую реставрацию, изготовленную по этой технологии. Пациенткой стала жена Франциска Дюре — разработчика чудо-технологии. Так при поддержке фирмы Henson International появилась система Duret, предназначенная для моделирования и производства реставраций.

На сегодня существуют разные системы, но этапы CAD/CAM у всех схожи.

  1. Получение информации с помощью стационарного сканера, контактного профилометра или внутриротовой камеры.
  2. Обработка информации с помощью программного обеспечения, перевод ее в систему координат.
  3. Виртуальное моделирование.
  4. Производство смоделированных реставраций фрезерным оборудованием.

Преимущества CAD/CAM технологий в стоматологии

Преимущества CAD/CAM технологий в стоматологии

В зуботехнической отрасли большой популярностью пользоваться зуботехнические конструкции из циркония. Они не имеют металлического основания, выглядят натурально. Изготовить подобные изделия способны только CAD/CAM-системы. Это не единственное преимущество технологии, есть и другие важные, достойные внимания плюсы:

  • высочайшая точность изготовления;
  • короткие сроки производства;
  • учет особенностей и потребностей пациента;
  • автоматизированный процесс, исключающий ошибки человеческого фактора.

Разные CAD/CAM-системы, используемые в стоматологии, имеют свои преимущества. На данный момент выделяют закрытые и открытые типы. Последние работают только с конкретными материалами — диски, блоки и.т.д. Открытые ценятся за возможность обновлять программное обеспечение, например, для работы с другим оборудованием.

С технической стороны тоже можно выделить несколько преимуществ.

  1. Материал не деформируется, что позволяет получать качественное изделие, соответствующее заданным параметрам.
  2. Визуализация не только конечного, но и промежуточных результатов, возможность обсудить и согласовать все с пациентом.
  3. Использование разных материалов для ортопедических конструкций.

Какие материалы используются в CAD/CAM системах

Технология CAD/CAM подразумевает возможность использования следующих материалов:

  • пластмасса;
  • воск;
  • керамика;
  • диоксид циркония;
  • титан
  • композиты
  • кобальт-хром

Виды изготавливаемых в стоматологии протезов

Технология CAD/CAM в стоматологии позволяет делать несъемные и съемные протезы, а также хирургические шаблоны. Чаще всего комплекс CAD/CAM в стоматологии используется для изготовления:

  • мостовидных конструкций;
  • телескопических коронок вкладок,
  • виниров;
  • коронок, временных коронок;
  • хирургических шаблонов, капп;
  • балочных конструкций;
  • абатментов;

CAD/CAM в стоматологии широко используется в ортопедической стоматологии, хирургии, терапевтии.

 

Лучшие модели CAD/CAM систем

Фрезерный станок Z4

Высокоточный станок, способный сделать реставрацию менее чем за 10 минут. Он оснащен электрическим шпинделем со скоростью вращения 100 000 об/мин. Обрабатывает стеклокерамику, титан, композиты, воск, РММА, кобальт-хром. Устройство совместимо со сканерами и разным программным обеспечением для моделирования. Есть интегрированный компьютер с сенсорным экраном.

Фрезерный станок К5+

Модель отражает легендарную немецкую точность и надежность. Корпус герметичен и защищает электронику, механику, шпиндель. Диск фиксируется без динамометрического ключа с помощью запатентованной технологии DirectDiscTechnology. Обеспечивает фрезеровку крепчайших материалов: композитов, циркония, кобальт-хрома и др.

Фрезерный станок К5

Популярный представитель систем CAD/CAM в целом и зубной техники в частности. Производит реставрации в Ultra HD, оснащен премиальным шпинделем с 4-роликовым подшипником из керамики. Обеспечивает постоянную точность 3 микрона.

Фрезерный станок N4

Доступное решение для стоматологических клиник. Подходит для фрезеровки титана и керамики. Оснащен восемью водяными форсунками, равномерно охлаждающими фрезы. Скорость вращения достигает 60 000 об/мин.

Виды изготавливаемых в стоматологии протезов

Cad.Systems — связаться с владельцем домена

УСЛОВИЯ: ПЛАНЫ АРЕНДЫ / ПОКУПКИ

Это соглашение относительно плана аренды или покупки домена («Соглашение») заключается в момент, когда вы нажимаете поле с пометкой «ОК» или «Я принимаю» во время оформления заказа («Дата вступления в силу») и между Epik, Inc, Вашингтонской корпорацией («Epik») и стороной, щелкнувшей таким образом или выбор («Вы»).

ДОГОВОР

ПОЭТОМУ, учитывая взаимные заветы и соглашения, изложенные в настоящем Согласие и другое хорошее и ценное вознаграждение, получение и достаточность которого настоящим признаем, что каждая из сторон настоящего Соглашения (каждая «Сторона» и вместе «Стороны») соглашается о нижеследующем:

1.План аренды / финансирования: домен, платежи и срок.

Нажимая на поле с пометкой «ОК» или «Я принимаю», вы соглашаетесь заключить настоящее Соглашение и быть связанным всеми условиями, указанными в данном документе. Вы соглашаетесь с тем, что платите за использование доменного имени, указанного на странице оформления заказа («Домен»). Период оплаты должен быть выбран и указан в процессе оформления заказа («Продолжительность платежа»).Сумма ежемесячного платежа также выбирается и указывается в процессе оформления заказа. Первый ежемесячный платеж подлежит уплате в Дату вступления в силу, а затем — каждый месяц в одно и то же число каждого месяца в течение Срока. По дополнительному и отдельному соглашению с Вами, и за дополнительную плату Epik может предоставить веб-сайт, расположенный по адресу Домена (вместе с соответствующим программным обеспечением и документацией), и эта страница должна быть включена в определение «Домен», а также подпадают под действие настоящего Соглашения и отдельного соглашения.Если вы не заплатите запланированный платеж в срок, тогда все права, которыми вы владеете по настоящему Соглашению, должны немедленно прекратить. В случае такого расторжения вы соглашаетесь, что больше не имеете права использования Домена, и Домен может быть немедленно продан, переназначен, передан, обременены или переданы в аренду другой стороне по собственному усмотрению Epik без дополнительных обязательств по Вы.

2. Право собственности.

Пока домен не будет приобретен вами, вы соглашаетесь с тем, что домен не принадлежит вам. Вы должны Держите Домен свободным и свободным от любых залогов и обременений. Вы не должны передавать Домен или это Соглашение, или какие-либо из его прав или обязательств по настоящему Соглашению или субаренду Домена.

3. Операции.

Вы должны немедленно уведомить Epik обо всех деталях, касающихся любого ущерба или убытков, возникших в результате функционирование или эксплуатация Домена. Вы не имеете права использовать и / или разрешать использование домена для любых незаконных целей или для которых веб-сайт не предназначен или не подходит.Кроме того, при использовании домена вы должны соблюдать все государственные законы, постановления и требования, включая, помимо прочего: (i) Закон о CAN-SPAM 2003 г. с поправками и любые и все разрешающие правила Федеральной торговой комиссии; (ii) Конфиденциальность детей в Интернете Закон о защите: (iii) все федеральные законы и законы штата, а также постановления правительства, касающиеся конфиденциальность, обманчивый маркетинг, защита данных и кредит; (iv) все уполномоченные правительством требования к страхованию, если таковые имеются, в отношении использования, обслуживания и эксплуатации Домен.Вы должны предоставить Epik любую дополнительную информацию, которую Epik сочтет необходимой или удобной. для обеспечения соблюдения всех применимых законов. Вы понимаете и соглашаетесь с тем, что если когда-либо обнаружил, что вы нарушили какой-либо применимый закон или постановление, или это требуется иным образом применимым законам или постановлениям, Epik может предпринять соответствующие действия для обеспечения соблюдения с такими законами или постановлениями.Вы понимаете, что Epik может разглашать конфиденциальную информацию. о Вас в соответствующие органы, если Epik по своему усмотрению определит, что он находится в лучшем интересы Epik в свете соответствующих правил и положений в соответствии с действующим законодательством. Вы соглашаетесь, что вы не должны (i) подавать заявки на регистрацию товарных знаков в любой юрисдикции, включающую или отражающую такое же или подобное слово, или комбинация слов, что и в Домене, и (ii) использовать Домен в каких-либо таким образом, чтобы нарушить интересы товарного знака какой-либо третьей стороны или Epik.В случае каких-либо нарушение товарного знака предполагается из-за использования вами Домена, вы соглашаетесь с тем, что будете исключительно и несет исключительную ответственность за расходы на защиту от такого предполагаемого нарушения в дополнение к любые убытки, которые могут быть в конечном итоге присуждены.

4. Невыполнение обязательств или нарушение.

Вы не выполняете обязательства по настоящему Соглашению, и настоящее Соглашение будет нарушено, если: а) Вы не выполните для оплаты любого ежемесячного платежа после наступления срока его оплаты, б) вы пытаетесь удалить, продать, передавать, обременять, передавать в субаренду или отдавать во владение Доменом, или c) Вы не соблюдаете или выполнять любые другие обязательства, которые должны соблюдаться или выполняться вами по настоящему Соглашению («По умолчанию»).В случае невыполнения обязательств, Epik должен вернуть себе Домен и больше не иметь обязательства перед вами, при условии, однако, что вы обязаны соблюдать все положения и условия настоящего Соглашение, которое может быть изложено здесь.

5. Разное.

Любые условия настоящего Соглашения могут быть изменены или отменены только с вашего письменного согласия. и Эпик вместе.Настоящее Соглашение представляет собой единоличное соглашение сторон и заменяет собой все устные переговоры и предыдущие письменные сообщения в отношении предмета настоящего Соглашения. действительность, толкование, толкование и исполнение настоящего Соглашения регулируются законы штата Вашингтон, округ Кинг. Настоящее Соглашение связывает и приносит пользу соответствующим правопреемникам сторон, разрешенным правопреемникам, наследникам, исполнители, администраторы и законные представители.В любом споре между сторонами Выигравшая сторона будет иметь право взыскать гонорары адвокатов и расходы с проигравшей стороны.

6. Контактная информация Epik

Epik, Inc
704 228th Ave NE
Sammamish, WA 98074, USA
Тел .: 425-366-8810
Эл. Почта: info (at) epik.com

,

Минутку …

Включите файлы cookie и перезагрузите страницу.

Этот процесс автоматический. Ваш браузер в ближайшее время перенаправит вас на запрошенный контент.

Подождите до 5 секунд…

+ ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (! + [] + (!! []) + !! [] + !! []) + (+ !! []) + (+ [] — (!! [])) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [ ] + !! [] + !! []) + (! + [] + (!! []) + !! [+ !! [] + !! [] + !! [] + !!] [] + !! []) + (+ !! [])) / + ((! + [] + (!! []) + !! [] + !! [] + !! [] + []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + ( ! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! []) + (+ !! []) + (! + [] + (!! []) + !! [] + !! []) + (+ !! []) + (+ !! []))

+ ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [ ] + !! [] + !! []) + (+ [] — (!! [])) + (! + [] + (!! []) + !! [] + !! []) + (+ !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! []) + (! + [] + ( !! []) + !! [] + !! []) + (+ !! [])) / + ((+ [] + (!! []) — [] + []) + (! + [] + (!! []) — (! + [] + (!! []) (! + [] + (!! []) []) + + !! []) + + !! [ ] + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! []) + ( ! + [] + (!! []) + !! []))

+ ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + [ ]) + (! + [] + (!! []) — []) + (+ [] — (!! []) (! + [] + (!! [])) + + !! [ ] + !! []) + (+ !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] +! ! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (+ [] + (!! [!]) — []) + + !! [])) / + (((+ [] + (!! []!)! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + []) + (! + [] + (!! []) + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! []))

+ ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (! + [] + ( !! []) + !! [] + !! []) + (+ !! []) + (+ [] -! (!! [])) + (+ [] + (!! [] ) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] ) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (+ !! [ ])) / + ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + [ ]) + (! + [] + (!! []) + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] +! ! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! []) + (+ [] — (!! []!)) + (! + [] + (!! []) + !! [] + !! []) + (+ [] + (!! []) + !! [] + !! [] + !! []) + (+ !! []))

+ ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (+ !! []) + (! + [] + (!! [ ]) + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [ ] + !! []) + (+ [] — (!! []!)) + (! + [] + (!! []) + !! [] + !! []) + (+ [ ] + (!! []) — (! + [] + (!! []) []) + (! + [] + (!! []) + !! [] + !! []) + + !! [])) / + ((! + [] + (!! []) + !! [] + !! [] + []) + (! + [] + (!! []) +! ! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! []) + ( + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! []) + (+ !! []) + (! + [] + (!! []) + !! [] + !! []) + (+ [] + (!! [!]) — []) + (+ [] + (!! []) + !! [] + !! [] + !! [] + !! []))

+ ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (! + [] + (!! []) + !! [] + !! []) + (+ !! []) + (+ [] — (!! [])) + (! + [] + (!! []) + !! [] +! ! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + ( !! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (+ !! [])) / + ((! + [] + (!! []) + !! [] + []) + (+ [] + (!! [!]) — []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] +! ! []) + (+ [] + (!! [!]) — []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! []) + (+ !! []) + (+ [] — ( !! [])) + (! + [] + (!! []) + !! []))

+ ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (! + [] + (!! []) + !! []) + (! + [ ] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (+ [] — (!! [ ])) + (! + [] + (!! []) + !! [] + !! []) + (+ !! []) + (! + [] + (!! []) +! ! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! []) + (+ !! [] )) / + ((! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] +! ! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! [] + !! [] + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! []) + (! + [] + (!! []) + !! [] + !! [] + !! []) + (+ !! []) + (+ [!] — (!! [])))

,

бесплатных чертежей САПР, 3D-моделей BIM, файлов Revit и спецификаций

Поиск и загрузка тысяч 2D-чертежей САПР, 3D-моделей BIM и спецификаций продуктов

Новое и заслуживающее внимания

Рекомендуемые производители

Изучите избранные дизайнерские материалы для включения в свой следующий проект.

Избранные 3D-модели

Просмотрите тысячи моделей BIM и SketchUp.

Избранные проекты

Откройте для себя более 2000 проектов для вдохновения

Партнеры в дизайне

Свяжитесь с 500+ североамериканскими производителями продукции.

Определение фирм

Дизайнерские фирмы высшего уровня, зарегистрированные на CADdetails.

Gensler

АЕС

Stantec

Перкинс Истман

Кларк Нексен

Jacobs

Pennoni

Перкинс + Уилл

Ч3М Хилл

Atkins

HDR, Inc.

Лео Дэли

EDSA

SWA Group

Анкром Мойсан

НАК Дизайн Группа

SmithGroup JJR, Inc.

HNTB

Архитекторы массива

Боллинджер

NBBJ

HMC Architects

HOK

Gannett Fleming, Inc.

,

QCAD — QCAD: 2D CAD

Эндрю Мустун

САПР с открытым исходным кодом для всех

QCAD — это бесплатное приложение с открытым исходным кодом для автоматизированного черчения (CAD) в двух измерениях (2D). С помощью QCAD вы можете создавать технические чертежи, такие как планы зданий, интерьеров, механических частей или схем и диаграмм. QCAD работает в Windows, macOS и Linux.Исходный код QCAD выпущен под лицензией GPL версии 3 (GPLv3), популярной лицензией с открытым исходным кодом.

Текущая версия QCAD — 3.24.

QCAD был разработан с учетом модульности, расширяемости и переносимости. Но что люди чаще всего замечают в QCAD, так это его интуитивно понятный пользовательский интерфейс. QCAD — это простая в использовании, но мощная система 2D CAD для всех. Вам не нужен опыт работы с САПР, чтобы сразу начать работу с QCAD. Вы можете скачать QCAD бесплатно сегодня!

Основные характеристики

  • слоев
  • Блоки (группировка)
  • Включено 35 шрифтов CAD
  • Поддержка шрифтов TrueType
  • Различные метрические и британские единицы измерения
  • Ввод и вывод DXF и DWG
  • Печать в масштабе
  • Печать на нескольких страницах
  • Более 40 строительных инструментов
  • Более 20 инструментов модификации
  • Построение и изменение точек, линий, дуг, окружностей, эллипсов, сплайнов, полилиний, текстов, размеров, штриховок, заливок, растровых изображений
  • Различные мощные инструменты выбора объектов
  • Объектные привязки
  • Инструменты измерительные
  • Библиотека деталей с более чем 4800 деталями CAD
  • Очень полный и чрезвычайно мощный скриптовый интерфейс ECMAScript (JavaScript)
  • Инструменты командной строки (dwg2pdf, dwg2svg, dwg2bmp и т. Д.)
  • QCAD / CAM:

Щелкните здесь, чтобы увидеть полный список функций.

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *